This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338551 #33 Nov 12 2020 01:17:16 %S A338551 0,1,1,4,7,14,20,31,39,55,65,86,96,126,133,171,179,223,228,286,283, %T A338551 352,348,422,408,497,467,569,534,642,594,720,654,791,719,863,775,942, %U A338551 831,1012,894,1082,945,1159,991,1216,1037,1263,1062,1311,1081,1340,1110,1366 %N A338551 Number of ways to make a checkout score of n in darts. %C A338551 In other words, the number of ways to achieve a score of n using at most 3 darts and finishing on a double. The maximum checkout score is 170, so this is a finite sequence. %H A338551 Carmen Bruni, <a href="/A338551/b338551.txt">Table of n, a(n) for n = 1..170</a> %H A338551 Wikipedia, <a href="https://en.wikipedia.org/wiki/Darts">Darts</a> %o A338551 (Python) %o A338551 def darts(n): %o A338551 if n > 170 or n <= 1: %o A338551 return 0 %o A338551 ans = 0 %o A338551 singles = list(range(1, 21)) + [25] %o A338551 doubles = list(map(lambda x: 2*x, singles)) %o A338551 triples = list(map(lambda x: 3*x, singles[:-1])) %o A338551 throws = singles+doubles+triples %o A338551 for i in range(len(throws)): %o A338551 for j in range(len(throws)): %o A338551 for k in range(len(doubles)): %o A338551 dart1 = throws[i] %o A338551 dart2 = throws[j] %o A338551 dart3 = doubles[k] %o A338551 if dart1 + dart2 + dart3 == n: %o A338551 ans += 1 %o A338551 for j in range(len(doubles)): %o A338551 dart1 = throws[i] %o A338551 dart2 = doubles[j] %o A338551 if dart1 + dart2 == n: %o A338551 ans += 1 %o A338551 return ans + (n in doubles) %o A338551 for i in range(1,171): %o A338551 print(darts(i)) %o A338551 (PARI) seq()={my(s=x*(1-x^20)/(1-x)+x^25, d=subst(s,x,x^2), g=s+d+subst(s-x^25,x,x^3)); Vecrev((1+g+g^2)*d/x)} \\ _Andrew Howroyd_, Nov 04 2020 %Y A338551 Cf. A008575, A242718, A242678, A242681, A167213, A076119, A244512, A117883. %K A338551 nonn,fini,full %O A338551 1,4 %A A338551 _Carmen Bruni_, Nov 02 2020