This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338553 #11 Nov 05 2020 22:57:03 %S A338553 1,1,2,3,5,7,10,15,20,29,37,56,68,101,122,170,213,297,352,490,587,778, %T A338553 948,1255,1488,1953,2337,2983,3585,4565,5393,6842,8123,10088,12015, %U A338553 14865,17534,21637,25527,31085,36701,44583,52262,63261,74175,88936,104305,124754 %N A338553 Number of integer partitions of n that are either constant or relatively prime. %C A338553 The Heinz numbers of these partitions are given by A338555 = A000961 \/ A289509. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %F A338553 For n > 0, a(n) = A000005(n) + A000837(n) - 1. %e A338553 The a(1) = 1 through a(7) = 15 partitions: %e A338553 (1) (2) (3) (4) (5) (6) (7) %e A338553 (11) (21) (22) (32) (33) (43) %e A338553 (111) (31) (41) (51) (52) %e A338553 (211) (221) (222) (61) %e A338553 (1111) (311) (321) (322) %e A338553 (2111) (411) (331) %e A338553 (11111) (2211) (421) %e A338553 (3111) (511) %e A338553 (21111) (2221) %e A338553 (111111) (3211) %e A338553 (4111) %e A338553 (22111) %e A338553 (31111) %e A338553 (211111) %e A338553 (1111111) %t A338553 Table[Length[Select[IntegerPartitions[n],SameQ@@#||GCD@@#==1&]],{n,0,30}] %Y A338553 A023022(n) + A059841(n) is the 2-part version. %Y A338553 A078374(n) + 1 is the strict case (n > 1). %Y A338553 A338554 counts the complement, with Heinz numbers A338552. %Y A338553 A338555 gives the Heinz numbers of these partitions. %Y A338553 A000005 counts constant partitions, with Heinz numbers A000961. %Y A338553 A000837 counts relatively prime partitions, with Heinz numbers A289509. %Y A338553 A282750 counts relatively prime partitions by sum and length. %Y A338553 Cf. A000010, A007360, A008284, A023023, A051424, A101271, A101391, A302698, A304712, A327516, A337664. %K A338553 nonn %O A338553 0,3 %A A338553 _Gus Wiseman_, Nov 03 2020