cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338554 Number of non-constant integer partitions of n whose parts have a common divisor > 1.

This page as a plain text file.
%I A338554 #10 Nov 09 2020 21:35:22
%S A338554 0,0,0,0,0,0,1,0,2,1,5,0,9,0,13,6,18,0,33,0,40,14,54,0,87,5,99,27,133,
%T A338554 0,211,0,226,55,295,18,443,0,488,100,637,0,912,0,1000,198,1253,0,1775,
%U A338554 13,1988,296,2434,0,3358,59,3728,489,4563,0,6241,0,6840,814
%N A338554 Number of non-constant integer partitions of n whose parts have a common divisor > 1.
%F A338554 For n > 0, a(n) = A018783(n) - A000005(n) + 1.
%e A338554 The a(6) = 2 through a(15) = 6 partitions (empty columns indicated by dots, A = 10, B = 11, C = 12):
%e A338554   (42)  .  (62)   (63)  (64)    .  (84)     .  (86)      (96)
%e A338554            (422)        (82)       (93)        (A4)      (A5)
%e A338554                         (442)      (A2)        (C2)      (C3)
%e A338554                         (622)      (633)       (644)     (663)
%e A338554                         (4222)     (642)       (662)     (933)
%e A338554                                    (822)       (842)     (6333)
%e A338554                                    (4422)      (A22)
%e A338554                                    (6222)      (4442)
%e A338554                                    (42222)     (6422)
%e A338554                                                (8222)
%e A338554                                                (44222)
%e A338554                                                (62222)
%e A338554                                                (422222)
%t A338554 Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&GCD@@#>1&]],{n,0,30}]
%Y A338554 A046022 lists positions of zeros.
%Y A338554 A082023(n) - A059841(n) is the 2-part version, n > 2.
%Y A338554 A303280(n) - 1 is the strict case (n > 1).
%Y A338554 A338552 lists the Heinz numbers of these partitions.
%Y A338554 A338553 counts the complement, with Heinz numbers A338555.
%Y A338554 A000005 counts constant partitions, with Heinz numbers A000961.
%Y A338554 A000837 counts relatively prime partitions, with Heinz numbers A289509.
%Y A338554 A018783 counts non-relatively prime partitions (ordered: A178472), with Heinz numbers A318978.
%Y A338554 A282750 counts relatively prime partitions by sum and length.
%Y A338554 Cf. A000010, A008284, A051424, A082024, A289508, A302698, A304712.
%K A338554 nonn
%O A338554 0,9
%A A338554 _Gus Wiseman_, Nov 07 2020