cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338556 Products of three prime numbers of even index.

This page as a plain text file.
%I A338556 #20 Oct 18 2024 18:07:42
%S A338556 27,63,117,147,171,261,273,333,343,387,399,477,507,549,609,637,639,
%T A338556 711,741,777,801,903,909,931,963,1017,1083,1113,1131,1179,1183,1251,
%U A338556 1281,1359,1421,1443,1467,1491,1557,1629,1653,1659,1677,1729,1737,1791,1813,1869
%N A338556 Products of three prime numbers of even index.
%C A338556 All terms are odd.
%C A338556 Also Heinz numbers of integer partitions with 3 parts, all of which are even. These partitions are counted by A001399.
%e A338556 The sequence of terms together with their prime indices begins:
%e A338556       27: {2,2,2}      637: {4,4,6}     1183: {4,6,6}
%e A338556       63: {2,2,4}      639: {2,2,20}    1251: {2,2,34}
%e A338556      117: {2,2,6}      711: {2,2,22}    1281: {2,4,18}
%e A338556      147: {2,4,4}      741: {2,6,8}     1359: {2,2,36}
%e A338556      171: {2,2,8}      777: {2,4,12}    1421: {4,4,10}
%e A338556      261: {2,2,10}     801: {2,2,24}    1443: {2,6,12}
%e A338556      273: {2,4,6}      903: {2,4,14}    1467: {2,2,38}
%e A338556      333: {2,2,12}     909: {2,2,26}    1491: {2,4,20}
%e A338556      343: {4,4,4}      931: {4,4,8}     1557: {2,2,40}
%e A338556      387: {2,2,14}     963: {2,2,28}    1629: {2,2,42}
%e A338556      399: {2,4,8}     1017: {2,2,30}    1653: {2,8,10}
%e A338556      477: {2,2,16}    1083: {2,8,8}     1659: {2,4,22}
%e A338556      507: {2,6,6}     1113: {2,4,16}    1677: {2,6,14}
%e A338556      549: {2,2,18}    1131: {2,6,10}    1729: {4,6,8}
%e A338556      609: {2,4,10}    1179: {2,2,32}    1737: {2,2,44}
%t A338556 Select[Range[1000],PrimeOmega[#]==3&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
%o A338556 (PARI) isok(m) = my(f=factor(m)); (bigomega(f)==3) && (#select(x->(x%2), apply(primepi, f[,1]~)) == 0); \\ _Michel Marcus_, Nov 10 2020
%o A338556 (Python)
%o A338556 from itertools import filterfalse
%o A338556 from math import isqrt
%o A338556 from sympy import primepi, primerange, integer_nthroot
%o A338556 def A338556(n):
%o A338556     def bisection(f,kmin=0,kmax=1):
%o A338556         while f(kmax) > kmax: kmax <<= 1
%o A338556         while kmax-kmin > 1:
%o A338556             kmid = kmax+kmin>>1
%o A338556             if f(kmid) <= kmid:
%o A338556                 kmax = kmid
%o A338556             else:
%o A338556                 kmin = kmid
%o A338556         return kmax
%o A338556     def f(x): return int(n+x-sum((primepi(x//(k*m))>>1)-(b>>1)+1 for a,k in filterfalse(lambda x:x[0]&1,enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2)) for b,m in filterfalse(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a))))
%o A338556     return bisection(f,n,n) # _Chai Wah Wu_, Oct 18 2024
%Y A338556 A014612 allows all prime indices (not just even) (strict: A007304).
%Y A338556 A066207 allows products of any length (strict: A258117).
%Y A338556 A338471 is the version for odds instead of evens (strict: A307534).
%Y A338556 A338557 is the strict case.
%Y A338556 A014311 is a ranking of ordered triples (strict: A337453).
%Y A338556 A001399(n-3) counts 3-part partitions (strict: A001399(n-6)).
%Y A338556 A005117 lists squarefree numbers, with even case A039956.
%Y A338556 A008284 counts partitions by sum and length (strict: A008289).
%Y A338556 A023023 counts 3-part relatively prime partitions (strict: A101271).
%Y A338556 A046316 lists products of exactly three odd primes (strict: A046389).
%Y A338556 A066208 lists numbers with all odd prime indices (strict: A258116).
%Y A338556 A075818 lists even Heinz numbers of 3-part partitions (strict: A075819).
%Y A338556 A307719 counts 3-part pairwise coprime partitions (strict: A220377).
%Y A338556 A285508 lists Heinz numbers of non-strict triples.
%Y A338556 Cf. A000217, A001221, A001222, A037144, A056239, A112798, A337599, A337600.
%Y A338556 Subsequence of A332820.
%K A338556 nonn
%O A338556 1,1
%A A338556 _Gus Wiseman_, Nov 08 2020