This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338576 #20 Jun 25 2022 21:55:00 %S A338576 1,4,9,32,25,216,49,512,243,1000,121,20736,169,2744,3375,16384,289, %T A338576 104976,361,160000,9261,10648,529,7962624,3125,17576,19683,614656,841, %U A338576 24300000,961,1048576,35937,39304,42875,362797056,1369,54872,59319,102400000,1681 %N A338576 a(n) = n * pod(n) where pod(n) = the product of divisors of n (A007955). %F A338576 a(n) = n * A007955(n) = n^2 * A007956(n). %F A338576 a(n) = lcm(n, pod(n)) * gcd(n, pod(n)). %F A338576 a(p) = p^2 for p = primes (A000040). %e A338576 a(6) = 6 * pod(6) = 6 * 36 = 216. %t A338576 a[n_] := n^(1 + DivisorSigma[0, n]/2); Array[a, 50] (* _Amiram Eldar_, Nov 03 2020 *) %o A338576 (Magma) [n * &*Divisors(n): n in [1..100]] %o A338576 (PARI) a(n) = n*vecprod(divisors(n)); \\ _Michel Marcus_, Nov 03 2020 %o A338576 (Python) %o A338576 from math import isqrt %o A338576 from sympy import divisor_count %o A338576 def A338576(n): return (isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2+1) # _Chai Wah Wu_, Jun 25 2022 %Y A338576 Cf. A007955 (pod(n)), A007956 (pod(n) / n). %Y A338576 Similar sequences: A038040 (n * tau(n)), A064987 (n * sigma(n)). %Y A338576 Cf. A174935 (partial sums of a(n)). %K A338576 nonn %O A338576 1,2 %A A338576 _Jaroslav Krizek_, Nov 03 2020