This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338577 #16 Jun 28 2024 22:23:15 %S A338577 2,3,5,7,11,13,19,23,31,47,83,89,113,199,1327 %N A338577 Primes p such that A013632(p)*A105161(p) > p. %C A338577 Primes p such that (q-p)*(r-p) > p, where q and r are the next two primes after p. %C A338577 a(16) > 10^8 if it exists. %C A338577 Sequence is finite if Cramér's conjecture is true. - _Chai Wah Wu_, Nov 03 2020 %C A338577 Data from A002386 and A005250 show that a(16) > 18361375334787046697 if it exists. - _Jason Yuen_, Jun 13 2024 %e A338577 a(5) = 11 is a member because 11 is prime, the next two primes are 13 and 17, and (13-11)*(17-11) = 12 > 11. %p A338577 p:= 0: q:=2:r:= 3: R:= NULL: %p A338577 while p < 10^4 do %p A338577 p:= q: q:= r: r:= nextprime(r); %p A338577 if (q-p)*(r-p) > p then R:= R, p fi %p A338577 od: %p A338577 R; %o A338577 (Python) %o A338577 from sympy import nextprime %o A338577 A338577_list, p, q, r = [], 2,3,5 %o A338577 while p < 10**6: %o A338577 if (q-p)*(r-p) > p: %o A338577 A338577_list.append(p) %o A338577 p, q, r = q, r, nextprime(r) # _Chai Wah Wu_, Nov 03 2020 %Y A338577 Contains A338567. %Y A338577 Cf. A013632, A105161, A338578. %Y A338577 Cf. A002386, A005250. %K A338577 nonn,more,hard %O A338577 1,1 %A A338577 _Robert Israel_, Nov 03 2020