This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338579 #14 Nov 17 2020 14:21:56 %S A338579 2,3,4,5,2,8,9,6,7,16,17,3,2,4,32,33,10,12,13,15,64,65,5,11,2,14,8, %T A338579 128,129,18,3,24,25,4,31,256,257,9,20,6,2,7,29,16,512,513,34,19,21,48, %U A338579 49,28,30,63,1024,1025,17,5,3,23,2,26,4,8,32,2048 %N A338579 Triangle T(D,N) read by rows, 1 <= N < D >= 2, where T(D,N) is the position of the fraction N/D in the Farey tree (or Stern-Brocot subtree) A007305/A007306. %C A338579 Fractions are reduced to lowest terms. %H A338579 Hugo Pfoertner, <a href="/A338579/b338579.txt">Table of n, a(n) for n = 2..1226</a>, rows 2..50, flattened. %e A338579 The triangle begins %e A338579 N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A338579 D \------------------------------------------------------------------ %e A338579 2 | 2 . . . . . . . . . . . . . . %e A338579 3 | 3 4 . . . . . . . . . . . . . %e A338579 4 | 5 2 8 . . . . . . . . . . . . %e A338579 5 | 9 6 7 16 . . . . . . . . . . . %e A338579 6 | 17 3 2 4 32 . . . . . . . . . . %e A338579 7 | 33 10 12 13 15 64 . . . . . . . . . %e A338579 8 | 65 5 11 2 14 8 128 . . . . . . . . %e A338579 9 | 129 18 3 24 25 4 31 256 . . . . . . . %e A338579 10 | 257 9 20 6 2 7 29 16 512 . . . . . . %e A338579 11 | 513 34 19 21 48 49 28 30 63 1024 . . . . . %e A338579 12 | 1025 17 5 3 23 2 26 4 8 32 2048 . . . . %e A338579 13 | 2049 66 36 40 22 96 97 27 57 61 127 4096 . . . %e A338579 14 | 4097 33 35 10 41 12 2 13 56 15 62 64 8192 . . %e A338579 15 | 8193 130 9 37 3 6 192 193 7 4 60 16 255 16384 . %e A338579 16 | 16385 65 68 5 80 11 47 2 50 14 113 8 125 128 32768 %e A338579 . %e A338579 T(7,2) = 10 because A007306(10) = 7 and A007305(10) = 2 is the required double match, i.e., the position of the fraction 2/7 in the Farey tree is 10. %e A338579 T(14,4) = T(7,2) = 10, because the fraction 4/14 reduced to lowest terms is 2/7. %e A338579 T(16,12) = 8, because the fraction 12/16 reduced to lowest terms is 3/4, with the double match A007306(8)=4 and A007305(8)=3. %o A338579 (PARI) \\ using _Yosu Yurramendi_'s formulas %o A338579 a338579(lim)={ %o A338579 my(a7305=vectorsmall(2+2^(lim+2)),a7306=vectorsmall(2+2^(lim+2))); %o A338579 a7305[1]=1; %o A338579 for(m=1,lim, %o A338579 for(k=0,2^(m-1)-1, %o A338579 a7305[2^m+k]=a7305[2^(m-1)+k]; %o A338579 a7305[2^m+2^(m-1)+k]=a7305[2^(m-1)+k]+a7305[2^m-k-1] %o A338579 ) %o A338579 ); %o A338579 a7306[1]=1;a7306[2]=2; %o A338579 for(m=0,lim, %o A338579 for(k=1,2^m, %o A338579 a7306[2^(m+1)+k]=a7306[2^m+k] + a7306[k]; %o A338579 a7306[2^(m+1)-k+1]=a7306[2^m+k] %o A338579 ) %o A338579 ); %o A338579 my(findinFS(x)=for(k=2,#a7306, %o A338579 if(!(a7305[k-1]/a7306[k]-x),return(k)));0); %o A338579 for(de=2,lim+2,for(nu=1,de-1,my(q=nu/de);print1(findinFS(q),", "))) %o A338579 }; %o A338579 a338579(10); %o A338579 (PARI) T(d,n) = my(ret=1); d-=n; while(n!=d, ret<<=1; if(n>d, n-=d;ret++, d-=n)); ret+1; \\ _Kevin Ryde_, Nov 11 2020 %Y A338579 Cf. A007305, A007306, A054424, A054425. %K A338579 nonn,tabl %O A338579 2,1 %A A338579 _Hugo Pfoertner_, Nov 10 2020