This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338616 #37 Dec 18 2021 22:20:57 %S A338616 2,2,6,2,6,8,6,2,12,10,6,8,6,10,22,2,6,16,6,12,24,10,6,8,16,10,24,16, %T A338616 6,26,6,2,24,10,30,24,6,10,24,12,6,30,6,18,52,10,6,8,20,20,24,18,6,34, %U A338616 36,16,24,10,6,34,6,10,56,2,36,38,6,18,24,34,6,26,6,10,54,18,42,40,6,12 %N A338616 a(n) is twice the number of parts in all partitions of n into consecutive parts. %C A338616 a(n) = 6 if and only if n is an odd prime. %C A338616 a(n) = 2 if and only if n is a power of 2. - _Omar E. Pol_, Dec 13 2021 %H A338616 Antti Karttunen, <a href="/A338616/b338616.txt">Table of n, a(n) for n = 1..20000</a> %H A338616 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A338616 a(n) = 2*A204217(n). %e A338616 Illustration of initial terms: %e A338616 Diagram %e A338616 n a(n) _ _ %e A338616 1 2 _|1 1|_ %e A338616 2 2 _|1 _ _ 1|_ %e A338616 3 6 _|1 |2 2| 1|_ %e A338616 4 2 _|1 _| |_ 1|_ %e A338616 5 6 _|1 |2 _ _ 2| 1|_ %e A338616 6 8 _|1 _| |3 3| |_ 1|_ %e A338616 7 6 _|1 |2 | | 2| 1|_ %e A338616 8 2 _|1 _| _| |_ |_ 1|_ %e A338616 9 12 _|1 |2 |3 _ _ 3| 2| 1|_ %e A338616 10 10 _|1 _| | |4 4| | |_ 1|_ %e A338616 11 6 _|1 |2 _| | | |_ 2| 1|_ %e A338616 12 8 _|1 _| |3 | | 3| |_ 1|_ %e A338616 13 6 _|1 |2 | _| |_ | 2| 1|_ %e A338616 14 10 _|1 _| _| |4 _ _ 4| |_ |_ 1|_ %e A338616 15 22 _|1 |2 |3 | |5 5| | 3| 2| 1|_ %e A338616 16 2 |1 | | | | | | | | 1| %e A338616 ... %e A338616 a(n) is the total length of all vertical line segments that are below and that share one vertex with the horizontal line segments that are in the n-th level of the diagram. %Y A338616 Cf. A054844 (twice the number of partitions of n into consecutive parts), A204217. %Y A338616 Cf. A000079, A001227, A065091, A237591, A237593, A286001, A335616. %K A338616 nonn %O A338616 1,1 %A A338616 _Omar E. Pol_, Nov 28 2020