This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338617 #27 Feb 16 2025 08:34:00 %S A338617 1,2304,1612127,1064918960,698512774464,457753027631164, %T A338617 299940605530116319,196531575367664678400,128774089577828985307985, %U A338617 84377085408032081020147412,55286683084713553039968700608,36225680193828279388607070447232,23736274839549237072891352060244017 %N A338617 Number of spanning trees in the n X 4 king graph. %H A338617 Seiichi Manyama, <a href="/A338617/b338617.txt">Table of n, a(n) for n = 1..300</a> %H A338617 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %H A338617 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a> %F A338617 Empirical g.f.: x*(56*x^7 + 7072*x^6 - 162708*x^5 + 371791*x^4 + 18080*x^3 - 49920*x^2 + 1556*x + 1) / (x^8 - 748*x^7 + 61345*x^6 - 368764*x^5 + 680848*x^4 - 368764*x^3 + 61345*x^2 - 748*x + 1). - _Vaclav Kotesovec_, Dec 04 2020 %o A338617 (Python) %o A338617 # Using graphillion %o A338617 from graphillion import GraphSet %o A338617 def make_nXk_king_graph(n, k): %o A338617 grids = [] %o A338617 for i in range(1, k + 1): %o A338617 for j in range(1, n): %o A338617 grids.append((i + (j - 1) * k, i + j * k)) %o A338617 if i < k: %o A338617 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A338617 if i > 1: %o A338617 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A338617 for i in range(1, k * n, k): %o A338617 for j in range(1, k): %o A338617 grids.append((i + j - 1, i + j)) %o A338617 return grids %o A338617 def A338029(n, k): %o A338617 if n == 1 or k == 1: return 1 %o A338617 universe = make_nXk_king_graph(n, k) %o A338617 GraphSet.set_universe(universe) %o A338617 spanning_trees = GraphSet.trees(is_spanning=True) %o A338617 return spanning_trees.len() %o A338617 def A338617(n): %o A338617 return A338029(n, 4) %o A338617 print([A338617(n) for n in range(1, 20)]) %Y A338617 Column 4 of A338029. %Y A338617 Cf. A003696. %K A338617 nonn %O A338617 1,2 %A A338617 _Seiichi Manyama_, Nov 29 2020