cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338620 Number of pandiagonal Latin squares of order 2n+1 with the first row in ascending order.

This page as a plain text file.
%I A338620 #63 Aug 17 2025 01:28:20
%S A338620 1,0,2,4,0,8,12386,0
%N A338620 Number of pandiagonal Latin squares of order 2n+1 with the first row in ascending order.
%C A338620 A pandiagonal Latin square is a Latin square in which the diagonal, antidiagonal and all broken diagonals and antidiagonals are transversals.
%C A338620 For orders n = 5, 7 and 11 all pandiagonal Latin squares are cyclic, so a(n) = A123565(2n+1) for n < 6. For n=6 (order 13), this is not true and there are 12386 inequivalent squares; of these 10 are cyclic (in all directions) and 1560 are semi-cyclic (A343867).
%C A338620 Pandiagonal Latin squares exist only for odd orders not divisible by 3. This is because the positions of each symbol are a solution to the toroidal n-queens problem which only has solutions for these sizes. - _Andrew Howroyd_, May 26 2021
%H A338620 A. O. L. Atkin, L. Hay, and R. G. Larson, <a href="https://doi.org/10.1016/0898-1221(83)90130-X">Enumeration and construction of pandiagonal Latin squares of prime order</a>, Computers & Mathematics with Applications, Volume. 9, Iss. 2, 1983, pp. 267-292.
%H A338620 Vahid Dabbaghian and Tiankuang Wu, <a href="http://dx.doi.org/10.1016/j.jda.2014.12.001">Constructing non-cyclic pandiagonal Latin squares of prime orders</a>, Journal of Discrete Algorithms 30, 2015.
%H A338620 Vahid Dabbaghian and Tiankuang Wu, <a href="http://dx.doi.org/10.1002/jcd.21414">Constructing Pandiagonal Latin Squares from Linear Cellular Automaton on Elementary Abelian Groups</a>, Journal of Combinatorial Designs 23(5).
%F A338620 a(n) >= A123565(2n+1) + A343867(n). - _Andrew Howroyd_, May 26 2021
%F A338620 a(n) = A342306(n) / (2n+1)!. - _Eduard I. Vatutin_, Jun 13 2021
%e A338620 Example of a cyclic pandiagonal Latin square of order 5:
%e A338620   0 1 2 3 4
%e A338620   2 3 4 0 1
%e A338620   4 0 1 2 3
%e A338620   1 2 3 4 0
%e A338620   3 4 0 1 2
%e A338620 Example of a cyclic pandiagonal Latin square of order 7:
%e A338620   0 1 2 3 4 5 6
%e A338620   2 3 4 5 6 0 1
%e A338620   4 5 6 0 1 2 3
%e A338620   6 0 1 2 3 4 5
%e A338620   1 2 3 4 5 6 0
%e A338620   3 4 5 6 0 1 2
%e A338620   5 6 0 1 2 3 4
%e A338620 Example of a cyclic pandiagonal Latin square of order 11:
%e A338620    0  1  2  3  4  5  6  7  8  9 10
%e A338620    2  3  4  5  6  7  8  9 10  0  1
%e A338620    4  5  6  7  8  9 10  0  1  2  3
%e A338620    6  7  8  9 10  0  1  2  3  4  5
%e A338620    8  9 10  0  1  2  3  4  5  6  7
%e A338620   10  0  1  2  3  4  5  6  7  8  9
%e A338620    1  2  3  4  5  6  7  8  9 10  0
%e A338620    3  4  5  6  7  8  9 10  0  1  2
%e A338620    5  6  7  8  9 10  0  1  2  3  4
%e A338620    7  8  9 10  0  1  2  3  4  5  6
%e A338620    9 10  0  1  2  3  4  5  6  7  8
%e A338620 For order 13 there is a square
%e A338620    7  1  0  3  6  5 12  2  8  9 10 11  4
%e A338620    2  3  4 10  0  7  6  9 12 11  5  8  1
%e A338620    4 11  1  7  8  9 10  3  6  0 12  2  5
%e A338620    6  5  8 11 10  4  7  0  1  2  3  9 12
%e A338620    8  9  2  5 12 11  1  4  3 10  0  6  7
%e A338620    3  6 12  0  1  2  8 11  5  4  7 10  9
%e A338620   10  0  3  2  9 12  5  6  7  8  1  4 11
%e A338620    1  7 10  4  3  6  9  8  2  5 11 12  0
%e A338620   11  4  5  6  7  0  3 10  9 12  2  1  8
%e A338620    5  8  7  1  4 10 11 12  0  6  9  3  2
%e A338620   12  2  9  8 11  1  0  7 10  3  4  5  6
%e A338620    9 10 11 12  5  8  2  1  4  7  6  0  3
%e A338620    0 12  6  9  2  3  4  5 11  1  8  7 10
%e A338620 that is pandiagonal but not cyclic (Dabbaghian and Wu).
%Y A338620 Cf. A071607 (rows are cyclic), A123565, A342306, A343867 (semicyclic).
%K A338620 nonn,more,hard
%O A338620 0,3
%A A338620 _Eduard I. Vatutin_, Nov 04 2020
%E A338620 Zero terms for even orders removed by _Andrew Howroyd_, May 26 2021