This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338621 #25 Dec 23 2020 07:36:56 %S A338621 1,1,2,2,1,2,2,1,2,2,3,2,2,4,3,2,2,4,5,2,2,2,4,6,7,1,2,2,4,6,9,6,1,2, %T A338621 2,4,6,10,11,7,2,2,4,6,10,13,14,5,2,2,4,6,10,14,19,15,5,2,2,4,6,10,14, %U A338621 21,22,17,3,2,2,4,6,10,14,22,27,29,17,2,2,2,4,6,10,14,22,29,36,33,17 %N A338621 Triangle read by rows: A(n, k) is the number of partitions of n with "aft" value k (see comments). %C A338621 The "aft" of an integer partition is the number of cells minus the larger of the number of parts or the largest part. For example, aft(4, 2, 2) = 8-4 = 4 = aft(3, 3, 1, 1). %C A338621 Columns stabilize to twice the partition numbers: A(n, k) = 2p(n) = A139582(n) if n > 2k. %C A338621 Row sums are partition numbers A000041. %C A338621 Maximum value of k in row n is n - ceiling(sqrt(n)) = (n-1) - floor(sqrt(n-1)) = A028391(n-1). %D A338621 S. C. Billey, M. Konvalinka, and J. P. Swanson, Asymptotic normality of the major index on standard tableaux, Adv. in Appl. Math. 113 (2020). %H A338621 S. C. Billey, M. Konvalinka, and J. P. Swanson, <a href="https://arxiv.org/abs/1905.00975">Asymptotic normality of the major index on standard tableaux</a>, arXiv:1905.00975 [math.CO], 2019. %H A338621 FindStat - Combinatorial Statistic Finder, <a href="https://www.findstat.org/StatisticsDatabase/St001214/">The aft of an integer partition</a> %F A338621 G.f.: Sum_{lambda} t^aft(lambda) * q^|lambda| = 1 + Sum_{r >= 0} c_r * q^(r+1) * Sum_{s >= 0} q^(2*s) * t^s * [2*s + r, s]_(q*t) where c_0 = 1, c_r = 2 for r >= 1, and [a, b]_q is a Gaussian binomial coefficient (see A022166). %e A338621 A(6, 2) = 4 since there are four partitions with 6 cells and aft 2, namely (4, 2), (2, 2, 1, 1), (4, 1, 1), (3, 1, 1, 1). %e A338621 Triangle starts: %e A338621 1; %e A338621 1; %e A338621 2; %e A338621 2, 1; %e A338621 2, 2, 1; %e A338621 2, 2, 3; %e A338621 2, 2, 4, 3; %e A338621 2, 2, 4, 5, 2; %e A338621 2, 2, 4, 6, 7, 1; %e A338621 2, 2, 4, 6, 9, 6, 1; %e A338621 2, 2, 4, 6, 10, 11, 7; %e A338621 2, 2, 4, 6, 10, 13, 14, 5; %e A338621 2, 2, 4, 6, 10, 14, 19, 15, 5; %e A338621 2, 2, 4, 6, 10, 14, 21, 22, 17, 3; %e A338621 2, 2, 4, 6, 10, 14, 22, 27, 29, 17, 2; %e A338621 2, 2, 4, 6, 10, 14, 22, 29, 36, 33, 17, 1; %e A338621 2, 2, 4, 6, 10, 14, 22, 30, 41, 45, 39, 15, 1; %e A338621 2, 2, 4, 6, 10, 14, 22, 30, 43, 52, 57, 41, 14; %e A338621 2, 2, 4, 6, 10, 14, 22, 30, 44, 57, 69, 67, 47, 11; %e A338621 2, 2, 4, 6, 10, 14, 22, 30, 44, 59, 76, 85, 81, 46, 9; ... %t A338621 CoefficientList[ %t A338621 SeriesCoefficient[ %t A338621 1 + Sum[If[r == 0, 1, 2] q^(r + 1) Sum[ %t A338621 q^(2 s) t^s QBinomial[2 s + r, s, q t], {s, 0, 30}], {r, 0, %t A338621 30}], {q, 0, 20}], t] %o A338621 (PARI) Row(n)={if(n==0, [1], my(v=vector(n)); forpart(p=n, v[1+n-max(#p, p[#p])]++); Vecrev(Polrev(v)))} %o A338621 { for(n=1, 15, print(Row(n))) } \\ _Andrew Howroyd_, Nov 04 2020 %Y A338621 Cf. A000041, A139582. %K A338621 easy,nonn,tabf %O A338621 0,3 %A A338621 _Joshua Swanson_, Nov 04 2020