This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338638 #19 Jul 04 2022 13:56:30 %S A338638 1,0,1,3,1,1,0,1,1,7,4,1,199,1,4,843,1,1,0,1,29,123,4,1,3,199,4,39603, %T A338638 29,1,5778,1,1,7,4,17622890,12752043,1,4,39603,7881196,1,5778,1,29,7, %U A338638 4,1,3,1149851,28143689044,7,29,1,0,312119004790,6643838879,7,4,1 %N A338638 a(n) = L(L(n)) mod L(n), where L = Lucas numbers = A000032. %H A338638 Alois P. Heinz, <a href="/A338638/b338638.txt">Table of n, a(n) for n = 0..4795</a> %F A338638 a(n) = A005371(n) mod A000032(n). %F A338638 a(n) = 0 for n in { A016089 }. %p A338638 b:= proc(n) local r, M, p; r, M, p:= %p A338638 <<1|0>, <0|1>>, <<0|1>, <1|1>>, n; %p A338638 do if irem(p, 2, 'p')=1 then r:= %p A338638 `if`(nargs=1, r.M, r.M mod args[2]) fi; %p A338638 if p=0 then break fi; M:= %p A338638 `if`(nargs=1, M.M, M.M mod args[2]) %p A338638 od; (r.<<2, 1>>)[1$2] %p A338638 end: %p A338638 a:= n-> (f-> b(f$2) mod f)(b(n)): %p A338638 seq(a(n), n=0..60); %t A338638 Table[Mod[LucasL[LucasL[n]],LucasL[n]],{n,0,60}] (* _Harvey P. Dale_, Jul 04 2022 *) %Y A338638 Cf. A000032, A005371, A016089, A213060, A263101, A338736, A338889. %K A338638 nonn,look %O A338638 0,4 %A A338638 _Alois P. Heinz_, Nov 04 2020