This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338646 #19 Jul 15 2021 02:50:01 %S A338646 2,3,5,19,37,47,38693,44657,148091,178621,692521,4584379,262148693, %T A338646 347850691,502176491,1139746919,1387837067,5291181761,92653098679, %U A338646 202259581243 %N A338646 Primes p such that 47^(p-1) == 1 + A*p (mod p^2) and |A/p| is a new record low. %C A338646 47 is the smallest b such that no base-b Wieferich prime, i.e., prime p such that b^(p-1) == 1 (mod p^2) is known (cf. Fischer). %C A338646 The known terms of the sequence are base-47 near-Wieferich primes matching a definition of "nearness" introduced by Dorais and Klyve (cf. Dorais, Klyve, 2011). %C A338646 If a base-47 Wieferich prime exists, then the sequence is finite and terminates at that prime. %H A338646 F. G. Dorais and D. Klyve, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Klyve/klyve3.html">A Wieferich Prime Search up to 6.7 × 10^15</a>, Journal of Integer Sequences, Vol. 14 (2011), Article 11.9.2. %H A338646 Richard Fischer, <a href="http://www.fermatquotient.com/FermatQuotienten/FermQ_Sort.txt">Thema: Fermatquotient B^(P-1) == 1 (mod P^2)</a> %e A338646 p | abs(A/p) (frac) | abs(A/p) (dec) %e A338646 ---------------------------------------------------- %e A338646 2 | 1/2 | 0.5 %e A338646 3 | 1/3 | 0.333333333333333 %e A338646 5 | 1/5 | 0.2 %e A338646 19 | 2/19 | 0.105263157894736 %e A338646 37 | 2/37 | 0.054054054054054 %e A338646 47 | 1/2209 | 0.000452693526482 %e A338646 38693 | 10/38693 | 0.000258444679916 %e A338646 44657 | 4/44657 | 0.000089571623709 %e A338646 148091 | 13/148091 | 0.000087783862625 %e A338646 178621 | 1/178621 | 0.000005598445871 %e A338646 692521 | 1/692521 | 0.000001443999532 %e A338646 4584379 | 1/4584379 | 0.000000218132052 %e A338646 262148693 | 39/262148693 | 0.000000148770530 %e A338646 347850691 | 47/347850691 | 0.000000135115442 %e A338646 502176491 | 51/502176491 | 0.000000101557920 %e A338646 1139746919 | 75/1139746919 | 0.000000065804082 %e A338646 1387837067 | 8/1387837067 | 0.000000005764365 %e A338646 5291181761 | 3/5291181761 | 0.000000000566981 %e A338646 92653098679 | 7/92653098679 | 0.000000000075550 %e A338646 202259581243 | 5/202259581243 | 0.000000000024720 %o A338646 (PARI) my(a=0, ab=0, r=0); forprime(p=1, , a = (lift(Mod(47, p^2)^(p-1))-1)/p; ab=abs(a/p); if(r==0, r=ab; print1(p, ", "), if(ab < r, r=ab; print1(p, ", ")))) %Y A338646 Cf. A339855. %K A338646 nonn,hard,more %O A338646 1,1 %A A338646 _Felix Fröhlich_, Apr 22 2021 %E A338646 a(19) from _Felix Fröhlich_, Jul 01 2021 %E A338646 a(20) from _Felix Fröhlich_, Jul 02 2021