This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338648 #31 Jan 08 2024 01:37:10 %S A338648 0,0,0,0,1,1,1,1,1,2,1,2,1,2,2,2,1,3,1,3,2,2,1,4,2,2,2,3,1,5,1,3,2,2, %T A338648 3,5,1,2,2,5,1,5,1,3,4,2,1,6,2,4,2,3,1,5,3,5,2,2,1,8,1,2,4,4,3,5,1,3, %U A338648 2,6,1,8,1,2,4,3,3,5,1,7,3,2,1,8,3,2,2,5,1,9,3,3,2,2,3,8,1,4,4,6,1,5,1,5,6,2,1,8,1,6 %N A338648 Number of divisors of n which are greater than 4. %H A338648 Seiichi Manyama, <a href="/A338648/b338648.txt">Table of n, a(n) for n = 1..10000</a> %H A338648 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>. %F A338648 G.f.: Sum_{k>=1} x^(5*k) / (1 - x^k). %F A338648 L.g.f.: -log( Product_{k>=5} (1 - x^k)^(1/k) ). %F A338648 a(n) = A000005(n) - A083040(n). %F A338648 G.f.: Sum_{k>=5} x^k/(1 - x^k). - _Seiichi Manyama_, Jan 07 2023 %F A338648 Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 37/12), where gamma is Euler's constant (A001620). - _Amiram Eldar_, Jan 08 2024 %t A338648 Table[DivisorSum[n, 1 &, # > 4 &], {n, 1, 110}] %t A338648 nmax = 110; CoefficientList[Series[Sum[x^(5 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] & %t A338648 nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 5, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] & %o A338648 (PARI) a(n) = sumdiv(n, d, d>4); \\ _Michel Marcus_, Apr 22 2021; corrected Jun 13 2022 %o A338648 (PARI) my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=5, N, x^k/(1-x^k)))) \\ _Seiichi Manyama_, Jan 07 2023 %Y A338648 Column k=5 of A135539. %Y A338648 Cf. A000005, A001620, A023645, A032741, A083040, A321014, A338649, A338650, A338651, A338652, A338653. %K A338648 nonn,easy %O A338648 1,10 %A A338648 _Ilya Gutkovskiy_, Apr 22 2021 %E A338648 a(1)-a(4) prepended by _David A. Corneth_, Jun 13 2022