cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338650 Number of divisors of n which are greater than 6.

This page as a plain text file.
%I A338650 #32 Jan 08 2024 01:37:43
%S A338650 0,0,0,0,0,0,1,1,1,1,1,1,1,2,1,2,1,2,1,2,2,2,1,3,1,2,2,3,1,3,1,3,2,2,
%T A338650 2,4,1,2,2,4,1,4,1,3,3,2,1,5,2,3,2,3,1,4,2,5,2,2,1,6,1,2,4,4,2,4,1,3,
%U A338650 2,5,1,7,1,2,3,3,3,4,1,6,3,2,1,7,2,2,2,5,1,7,3,3,2,2,2,7,1,4,4,5,1,4,1,5,5,2,1,7,1,5
%N A338650 Number of divisors of n which are greater than 6.
%H A338650 Seiichi Manyama, <a href="/A338650/b338650.txt">Table of n, a(n) for n = 1..10000</a>
%H A338650 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>.
%F A338650 G.f.: Sum_{k>=1} x^(7*k) / (1 - x^k).
%F A338650 L.g.f.: -log( Product_{k>=7} (1 - x^k)^(1/k) ).
%F A338650 G.f.: Sum_{k>=7} x^k/(1 - x^k). - _Seiichi Manyama_, Jan 07 2023
%F A338650 Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 69/20), where gamma is Euler's constant (A001620). - _Amiram Eldar_, Jan 08 2024
%t A338650 Table[DivisorSum[n, 1 &, # > 6 &], {n, 1, 110}]
%t A338650 nmax = 110; CoefficientList[Series[Sum[x^(7 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
%t A338650 nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 7, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
%o A338650 (PARI) a(n) = sumdiv(n, d, d>6); \\ _Michel Marcus_, Apr 22 2021
%o A338650 (PARI) my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0], Vec(sum(k=7, N, x^k/(1-x^k)))) \\ _Seiichi Manyama_, Jan 07 2023
%Y A338650 Column k=7 of A135539.
%Y A338650 Cf. A000005, A001620, A023645, A032741, A321014, A338648, A338649, A338651, A338652, A338653.
%K A338650 nonn,easy
%O A338650 1,14
%A A338650 _Ilya Gutkovskiy_, Apr 22 2021
%E A338650 a(1)-a(6) prepended by _David A. Corneth_, Jun 13 2022