This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338673 #13 May 09 2021 02:30:07 %S A338673 1,1,5,21,101,421,2021,8421,39397,167397,766437,3244517,14881253, %T A338673 62804453,283415013,1210159589,5401907685,22966866405,102497423845, %U A338673 435085808101,1925197238757,8215432696293,36068400468453,153579729097189,674546796630501,2866238341681637,12508012102193637 %N A338673 Expansion of Product_{k>=1} 1 / (1 - 4^(k-1)*x^k). %F A338673 a(n) = Sum_{k=0..n} p(n,k) * 4^(n-k), where p(n,k) = number of partitions of n into k parts. %F A338673 a(n) ~ sqrt(3) * polylog(2, 1/4)^(1/4) * 4^(n - 1/2) * exp(2*sqrt(polylog(2, 1/4)*n)) / (2*sqrt(Pi)*n^(3/4)). - _Vaclav Kotesovec_, May 09 2021 %t A338673 nmax = 26; CoefficientList[Series[Product[1/(1 - 4^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x] %t A338673 Table[Sum[Length[IntegerPartitions[n, {k}]] 4^(n - k), {k, 0, n}], {n, 0, 26}] %t A338673 a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 4^(k - k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}] %Y A338673 Cf. A008284, A075900, A246936, A300579, A338674, A338675, A338676, A338677, A338678, A338679. %K A338673 nonn %O A338673 0,3 %A A338673 _Ilya Gutkovskiy_, Apr 23 2021