cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338675 Expansion of Product_{k>=1} 1 / (1 - 6^(k-1)*x^k).

This page as a plain text file.
%I A338675 #13 May 09 2021 02:28:55
%S A338675 1,1,7,43,295,1807,12391,75895,512647,3179815,21196807,131258311,
%T A338675 875934727,5416216711,35763798535,223059458311,1461247179271,
%U A338675 9093600322567,59586011601415,370499158291975,2411884242270727,15072418547458567,97530161503173127,608700350537722375
%N A338675 Expansion of Product_{k>=1} 1 / (1 - 6^(k-1)*x^k).
%F A338675 a(n) = Sum_{k=0..n} p(n,k) * 6^(n-k), where p(n,k) = number of partitions of n into k parts.
%F A338675 a(n) ~ sqrt(5) * polylog(2, 1/6)^(1/4) * 6^(n - 1/2) * exp(2*sqrt(polylog(2, 1/6)*n)) / (2*sqrt(Pi)*n^(3/4)). - _Vaclav Kotesovec_, May 09 2021
%t A338675 nmax = 23; CoefficientList[Series[Product[1/(1 - 6^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%t A338675 Table[Sum[Length[IntegerPartitions[n, {k}]] 6^(n - k), {k, 0, n}], {n, 0, 23}]
%t A338675 a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 6^(k - k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
%Y A338675 Cf. A008284, A075900, A246938, A300579, A338673, A338674, A338676, A338677, A338678, A338679.
%K A338675 nonn
%O A338675 0,3
%A A338675 _Ilya Gutkovskiy_, Apr 23 2021