cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338685 a(n) = Sum_{d|n} d^n * binomial(d, n/d).

This page as a plain text file.
%I A338685 #23 Feb 20 2023 08:10:06
%S A338685 1,8,81,1040,15625,282123,5764801,134610944,3486804084,100097656250,
%T A338685 3138428376721,107025924222976,3937376385699289,155582338242342053,
%U A338685 6568408660888671875,295155786482995691520,14063084452067724991009,708240750793407501694308,37589973457545958193355601
%N A338685 a(n) = Sum_{d|n} d^n * binomial(d, n/d).
%H A338685 Winston de Greef, <a href="/A338685/b338685.txt">Table of n, a(n) for n = 1..384</a>
%F A338685 G.f.: Sum_{k >= 1} ((1 + (k * x)^k)^k - 1).
%F A338685 If p is prime, a(p) = p^(p+1).
%t A338685 a[n_] := DivisorSum[n, #^n * Binomial[#, n/#] &]; Array[a, 20] (* _Amiram Eldar_, Apr 24 2021 *)
%o A338685 (PARI) a(n) = sumdiv(n, d, d^n*binomial(d, n/d));
%o A338685 (PARI) N=20; x='x+O('x^N); Vec(sum(k=1, N, (1+(k*x)^k)^k-1))
%Y A338685 Cf. A023887, A318636, A327238, A338684, A338693.
%K A338685 nonn
%O A338685 1,2
%A A338685 _Seiichi Manyama_, Apr 23 2021