A338686 Number of ways to write n as x^5 + y^2 + [z^2/7], where x,y,z are integers with x >= 0, y >= 1 and z >= 2, and [.] is the floor function.
1, 2, 2, 3, 3, 3, 3, 2, 3, 4, 4, 4, 3, 2, 3, 4, 3, 5, 5, 2, 4, 3, 2, 3, 4, 5, 4, 4, 4, 4, 2, 2, 6, 5, 2, 6, 8, 6, 4, 5, 6, 6, 5, 4, 6, 5, 4, 5, 4, 10, 6, 5, 8, 3, 5, 5, 7, 6, 4, 5, 7, 5, 2, 6, 7, 6, 7, 8, 6, 4, 5, 6, 8, 6, 2, 4, 8, 4, 6, 3, 5, 10, 6, 8, 7, 5, 5, 6, 5, 5, 5, 7, 6, 4, 4, 6, 3, 8, 7, 7
Offset: 1
Keywords
Examples
a(1) = 1 with 1 = 0^5 + 1^2 + [2^2/7]. a(166) = 1 with 166 = 0^5 + 1^2 + [34^2/7]. a(323) = 1 with 323 = 2^5 + 17^2 + [4^2/7]. a(815) = 1 with 815 = 2^5 + 1^2 + [74^2/7]. a(2069) = 1 with 2069 = 0^5 + 37^2 + [70^2/7]. a(7560) = 1 with 7560 = 2^5 + 64^2 + [155^2/7]. a(24195) = 1 with 24195 = 0^5 + 8^2 + [411^2/7]. a(90886) = 2 with 90886 = 4^5 + 34^2 + [788^2/7] = 9^5 + 139^2 + [296^2/7].
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[n-x^5-Floor[y^2/7]],r=r+1],{x,0,(n-1)^(1/5)},{y,2,Sqrt[7(n-x^5)-1]}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments