cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338690 Inverse Moebius transform of A209615.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3
Offset: 1

Views

Author

Jianing Song, Apr 24 2021

Keywords

Comments

Earliest occurrence of k is A018782(k).

Crossrefs

Cf. A209615, A035184 (a similar sequence), A018782, A002654, A019673.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 4] == 1, e + 1, (1 + (-1)^e)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2022 *)
  • PARI
    a(n) = my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p%4==1, r*=e+1, if(e%2, return(0)))); r

Formula

Multiplicative with a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p = 2 or p == 3 (mod 4).
a(n) = A002654(n) = A035184(n) for odd n. a(2^e * m) = a(m) for even m, 0 for odd m.
Dirichlet g.f.: zeta(s)*beta(s)/(1 + 2^(-s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/6 = 0.523598... (A019673). - Amiram Eldar, Oct 22 2022