cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338721 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists the odd numbers k times, and the first element of column k is in row k(k+1)/2.

This page as a plain text file.
%I A338721 #29 Jul 09 2025 04:54:34
%S A338721 1,3,5,1,7,1,9,3,11,3,1,13,5,1,15,5,1,17,7,3,19,7,3,1,21,9,3,1,23,9,5,
%T A338721 1,25,11,5,1,27,11,5,3,29,13,7,3,1,31,13,7,3,1,33,15,7,3,1,35,15,9,5,
%U A338721 1,37,17,9,5,1,39,17,9,5,3,41,19,11,5,3,1,43,19,11,7,3,1
%N A338721 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists the odd numbers k times, and the first element of column k is in row k(k+1)/2.
%C A338721 A missing companion to A196020 and A235791.
%C A338721 T(n,k) is the total number of horizontal steps in the first n levels of the k-th largest double-staircase of the diagram defined in A335616 (see example). - _Omar E. Pol_, Nov 30 2020
%C A338721 Column k is the partial sums of the k-th column of A339275. - _Omar E. Pol_, Dec 01 2020
%H A338721 Alois P. Heinz, <a href="/A338721/b338721.txt">Rows n = 1..500, flattened</a>
%F A338721 T(n,k) = 2 * floor((n-k*(k-1)/2)/k) - 1. - _Alois P. Heinz_, Nov 30 2020
%e A338721 Triangle begins:
%e A338721    1;
%e A338721    3;
%e A338721    5,  1;
%e A338721    7,  1;
%e A338721    9,  3;
%e A338721   11,  3,  1;
%e A338721   13,  5,  1;
%e A338721   15,  5,  1;
%e A338721   17,  7,  3;
%e A338721   19,  7,  3,  1;
%e A338721   21,  9,  3,  1;
%e A338721   23,  9,  5,  1;
%e A338721   25, 11,  5,  1;
%e A338721   27, 11,  5,  3;
%e A338721   29, 13,  7,  3,  1;
%e A338721   31, 13,  7,  3,  1;
%e A338721   33, 15,  7,  3,  1;
%e A338721   35, 15,  9,  5,  1;
%e A338721   37, 17,  9,  5,  1;
%e A338721   39, 17,  9,  5,  3;
%e A338721   41, 19, 11,  5,  3,  1;
%e A338721   43, 19, 11,  7,  3,  1;
%e A338721   45, 21, 11,  7,  3,  1;
%e A338721   47, 21, 13,  7,  3,  1;
%e A338721   49, 23, 13,  7,  5,  1;
%e A338721   51, 23, 13,  9,  5,  1;
%e A338721   53, 25, 15,  9,  5,  3;
%e A338721   55, 25, 15,  9,  5,  3,  1;
%e A338721 ...
%e A338721 From _Omar E. Pol_, Nov 30 2020: (Start)
%e A338721 For an illustration of the rows of triangle consider the infinite "double-staircases" diagram defined in A335616.
%e A338721 For n = 15 the diagram with first 15 levels looks like this:
%e A338721 .
%e A338721 Level                         "Double-staircases" diagram
%e A338721 .                                          _
%e A338721 1                                        _|1|_
%e A338721 2                                      _|1 _ 1|_
%e A338721 3                                    _|1  |1|  1|_
%e A338721 4                                  _|1   _| |_   1|_
%e A338721 5                                _|1    |1 _ 1|    1|_
%e A338721 6                              _|1     _| |1| |_     1|_
%e A338721 7                            _|1      |1  | |  1|      1|_
%e A338721 8                          _|1       _|  _| |_  |_       1|_
%e A338721 9                        _|1        |1  |1 _ 1|  1|        1|_
%e A338721 10                     _|1         _|   | |1| |   |_         1|_
%e A338721 11                   _|1          |1   _| | | |_   1|          1|_
%e A338721 12                 _|1           _|   |1  | |  1|   |_           1|_
%e A338721 13               _|1            |1    |  _| |_  |    1|            1|_
%e A338721 14             _|1             _|    _| |1 _ 1| |_    |_             1|_
%e A338721 15            |1              |1    |1  | |1| |  1|    1|              1|
%e A338721 .
%e A338721 The first largest double-staircase has 29 horizontal steps, the second double-staircase has 13 steps, the third double-staircase has 7 steps, the fourth double-staircase has 3 steps and the fifth double-staircase has only one step, so the 15th row of triangle is [29, 13, 7, 3, 1]. (End)
%p A338721 T:= (n, k)-> 2*iquo(n-k*(k-1)/2, k)-1:
%p A338721 seq(seq(T(n,k), k=1..floor((sqrt(1+8*n)-1)/2)), n=1..30);  # _Alois P. Heinz_, Nov 30 2020
%Y A338721 Cf. A196020, A235791, A237593, A335616, A338722, A338723, A339275.
%K A338721 nonn,tabf
%O A338721 1,2
%A A338721 _N. J. A. Sloane_, Nov 30 2020