cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338731 Generating function Sum_{n >= 0} a(n)*x^n = Sum_{k>=1} x^(k*(3*k+1)/2)/(1-x^k).

This page as a plain text file.
%I A338731 #20 Dec 04 2020 04:21:40
%S A338731 0,0,1,1,1,1,1,2,1,2,1,2,1,2,1,3,1,2,2,2,1,3,1,2,2,2,2,3,1,2,3,2,1,3,
%T A338731 2,2,2,2,2,3,2,2,3,2,1,4,2,2,2,2,3,3,1,2,3,3,1,4,2,2,3,2,2,4,1,3,3,2,
%U A338731 1,4,3,2,2,2,2,5,1,3,3,2,2,4,2,2,3,3,2,4,1,2,4,3,1
%N A338731 Generating function Sum_{n >= 0} a(n)*x^n = Sum_{k>=1} x^(k*(3*k+1)/2)/(1-x^k).
%C A338731 The OEIS contains many very similar sequences, but this one was missing.
%H A338731 Seiichi Manyama, <a href="/A338731/b338731.txt">Table of n, a(n) for n = 0..10000</a>
%o A338731 (PARI) my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(k*(3*k+1)/2)/(1-x^k)))) \\ _Seiichi Manyama_, Dec 03 2020
%Y A338731 Cf. A001227, A081757, A117277, A330889, A338730, A338732.
%K A338731 nonn
%O A338731 0,8
%A A338731 _N. J. A. Sloane_, Dec 02 2020