This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338739 #6 Nov 06 2020 09:23:07 %S A338739 1,2,2,4,4,8,8,16,16,31,32,62,63,124,126,248,252,496,504,991,1007, %T A338739 1982,2013,3960,4023,7914,8040,15816,16068,31609,32112,63171,64180, %U A338739 126251,128266,252318,256347,504268,512324,1007801,1023909,2014131,2046338,4025329,4089724 %N A338739 Number of true-palindromic compositions of n. %C A338739 A true-palindromic composition or true-palindrome to be a composition whose digit-comma-sequence is the same whether read from left to right or right to left. [Shapcott p. 35] %H A338739 Caroline Shapcott, <a href="https://ajc.maths.uq.edu.au/pdf/60/ajc_v60_p035.pdf">An introduction to true-palindromic compositions</a>, Australasian Journal of Combinatorics, Volume 60(1) (2014), Pages 35-49. %F A338739 Shapcott gives a g.f on p. 3, and 1 should be subtracted to get sequence for n>=1. %e A338739 (12, 6, 21) is a true-palindromic composition of 39. %e A338739 (126, 621) is a true-palindromic composition of 747. %o A338739 (PARI) rev(n) = Vecrev(n=digits(n)); \\ A004086 %o A338739 ispal(n) = Vecrev(n=digits(n))==n; \\ A002113 %o A338739 radd(n) = fromdigits(Vecrev(digits(n))) + n; \\ A056964 %o A338739 lista(nn) = my(x='x+O('x^(nn))); Vec(sum(k=0, nn, if (ispal(k), x^k))/(1 - sum(k=1, nn, if (k%10, x^radd(k)))) - 1); %Y A338739 Cf. A002113, A004086, A056964. %Y A338739 Cf. A016116 (symmetric compositions), A338740. %K A338739 nonn,base %O A338739 1,2 %A A338739 _Michel Marcus_, Nov 06 2020