A338777 a(n) = Product_{k in GB(2*n)} k, where GB(n) is the set of primes which are Goldbach-associated with n.
1, 1, 1, 3, 3, 5, 5, 7, 5, 35, 7, 55, 385, 91, 11, 1001, 13, 187, 1547, 133, 187, 2717, 91, 391, 24871, 247, 253, 55913, 247, 5423, 2800733, 589, 4301, 164749, 31, 124729, 2442583, 14911, 11339, 4075291, 9139, 300817, 2629420651, 10621, 20213, 116883421171, 7657
Offset: 0
Keywords
Examples
m: GB(m) -> Product(GB) 0: [] -> 1 2: [] -> 1 4: [] -> 1 6: [3] -> 3 8: [3] -> 3 10: [5] -> 5 ... 90: [11, 17, 19, 23, 29, 31, 37, 43] -> 116883421171 92: [13, 19, 31] -> 7657 94: [11, 23, 41, 47] -> 487531 96: [13, 17, 23, 29, 37, 43] -> 234524537 98: [19, 31, 37] -> 21793 100: [11, 17, 29, 41, 47] -> 10450121
Links
- Peter Luschny, Table of n, a(n) for n = 0..1000
- Denise Vella-Chemla, Continuer de suivre Galois, 2013.
- Wikipedia, Goldbach's conjecture
- Index entries for sequences related to Goldbach conjecture
Comments