A338782 The largest e-squarefree e-divisor of n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 12, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, On certain arithmetic functions involving exponential divisors, II, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 27 (2007), pp. 155-166, arXiv preprint, arXiv:0708.3557 [math.NT], 2007-2009.
Programs
-
Mathematica
rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); f[p_, e_] := p^rad[e]; a[1]=1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
Formula
Multiplicative with a(p^e) = p^rad(e), where rad(k) is the largest squarefree number dividing k (A007947).
Sum_{n<=x} a(n) = (1/2) * c * x^2, where c = Product_{p prime} Sum{k>=4} (p^rad(k) - p^(1+rad(k-1)))/p^(2*k) = 0.9646498658... (Tóth, 2007).
Comments