cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A338801 Irregular table read by rows: The number of k-faced polyhedra, where k>=4, created when an n-prism, formed from two n-sided regular polygons joined by n adjacent rectangles, is internally cut by all the planes defined by any three of its vertices.

Original entry on oeis.org

17, 0, 1, 72, 24, 575, 450, 232, 60, 15, 0, 3, 1728, 1668, 948, 144, 24, 12, 8799, 10080, 6321, 3052, 898, 490, 161, 14, 35, 14, 7, 22688, 24080, 12784, 4160, 1248, 272, 80, 32, 78327, 101142, 70254, 39708, 19584, 6894, 2369, 1062, 351, 54, 27, 18, 27, 36, 11, 165500, 203220, 134860, 62520, 21240, 5720, 1080, 300, 100, 20
Offset: 3

Views

Author

Scott R. Shannon, Nov 10 2020

Keywords

Comments

See A338783 for further details and images for this sequence.
The author thanks Zach J. Shannon for assistance in producing the images for this sequence.

Examples

			The triangular 3-prism is cut with 6 internal planes defined by all 3-vertex combinations of its 6 vertices. This leads to the creation of seventeen 4-faced polyhedra and one 6-faced polyhedra, eighteen pieces in all. The single 6-faced polyhedra lies at the very center of the original 3-prism.
The 9-prism is cut with 207 internal planes leading to the creation of 319864 pieces. It is noteworthy in creating all k-faced polyhedra from k=4 to k=18.
The table begins:
17,0,1;
72,24;
575,450,232,60,15,0,3;
1728,1668,948,144,24,12;
8799,10080,6321,3052,898,490,161,14,35,14,7;
22688,24080,12784,4160,1248,272,80,32;
78327,101142,70254,39708,19584,6894,2369,1062,351,54,27,18,27,36,11;
165500,203220,134860,62520,21240,5720,1080,300,100,20;
		

Crossrefs

Cf. A338783 (number of polyhedra), A338808 (antiprism), A338622 (Platonic solids), A333543 (n-dimensional cube).

Formula

Sum of row n = A338783(n).

A338806 Number of polyhedra formed when an n-antiprism, formed from two n-sided regular polygons joined by 2n adjacent alternating triangles, is internally cut by all the planes defined by any three of its vertices.

Original entry on oeis.org

8, 195, 834, 6365, 22770, 81769, 271702, 688793
Offset: 3

Views

Author

Scott R. Shannon, Nov 10 2020

Keywords

Comments

For an n-antiprism, formed from two n-sided regular polygons joined by 2n adjacent alternating triangles, create all possible internal planes defined by connecting any three of its vertices. For example, in the case of a triangular 3-antiprism this results in 3 planes. Use all the resulting planes to cut the prism into individual smaller polyhedra. The sequence lists the number of resulting polyhedra for antiprisms with n>=3.
See A338808 for the number and images of the k-faced polyhedra in each antiprism dissection.
The author thanks Zach J. Shannon for assistance in producing the images for this sequence.

Examples

			a(3) = 8. The 3-antiprism is cut with 3 internal planes resulting in 8 polyhedra, all 8 pieces having 4 faces.
a(4) = 195. The 4-antiprism is cut with 16 internal planes resulting in 195 polyhedra; 128 with 4 faces, 56 with 5 faces, 8 with 6 faces, and 3 with 8 faces. Note the number of 8-faced polyhedra is not a multiple of 4 - they lie directly along the z-axis so are not symmetric with respect to the number of edges forming the regular n-gons.
		

Crossrefs

Cf. A338808 (number of k-faced polyhedra), A338783 (regular prism), A338571 (Platonic solids), A333539 (n-dimensional cube).

A347753 Number of polyhedra formed when a row of n adjacent cubes are internally cut by all the planes defined by any three of their vertices.

Original entry on oeis.org

96, 2968, 42384, 319416
Offset: 1

Views

Author

Scott R. Shannon, Sep 12 2021

Keywords

Comments

For a row of n adjacent cubes create all possible planes defined by connecting any three of their vertices. For example, in the case of a single cube this results in fourteen planes; six planes between the pairs of parallel edges connected to each end of the face diagonals, and eight planes from connecting the three vertices adjacent to each corner vertex. Use all the resulting planes to cut the entire solid into individual smaller polyhedra. The sequence lists the numbers of resulting polyhedra for n adjacent cubes.
See A347918 for the number of k-faced polyhedra for each value of n.

Examples

			a(1) = 96. A single cube, with eight vertices, has 14 internal cutting planes resulting in 96 polyhedra. See A333539 and A338571.
a(2) = 2968. Two adjacent cubes, with twelve vertices, have 51 internal cutting planes resulting in 2968 polyhedra.
a(3) = 42384. Three adjacent cubes, with sixteen vertices, have 124 internal cutting planes resulting in 42384 polyhedra.
a(4) = 319416. Four adjacent cubes, with twenty vertices, have 245 internal cutting planes resulting in 319416 polyhedra.
		

Crossrefs

Cf. A347918 (number of k-faced polyhedra), A333539 (n-dimensional cube), A338571 (Platonic solids), A338783 (n-prism), A338809 (n-bipyramid), A007588.

Formula

a(1) = A333539(3).
Conjectured formula for the number of internal cutting planes for n adjacent cubes is A007588(n+1).
Showing 1-3 of 3 results.