This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338785 #11 Nov 11 2020 19:37:57 %S A338785 1,2,13,4,6,8,21,11,30,14,18,27,44,41,29,43,37,34,68,36,42,94,147,58, %T A338785 88,47,186,93,142,75,110,90,112,67,178,228,82,114,100,222,187,105,191, %U A338785 143,204,131,180,115,172,177,197,133,263,272,353,175,231,242,322,157 %N A338785 a(n) is the least number k such that continued fraction for sqrt(prime(k)) has period n. %H A338785 Robert Israel, <a href="/A338785/b338785.txt">Table of n, a(n) for n = 1..1000</a> %F A338785 a(n) = A000720(A059800(n)). %e A338785 sqrt(prime(1)) = sqrt(2) = 1 + 1/(2 + 1/(2 + ...)), period 1. %e A338785 sqrt(prime(2)) = sqrt(3) = 1 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + ...)))), period 2. %e A338785 sqrt(prime(13)) = sqrt(41) = 6 + 1/(2 + 1/(2 + 1/(12 + 1/(2 + 1/(2 + 1/(12 + ...)))))), period 3. %p A338785 N:= 100: # for a(1)..a(N) %p A338785 A:= Vector(N): count:= 0: p:= 1: %p A338785 for n from 1 while count < N do %p A338785 p:= nextprime(p); %p A338785 v:= nops(numtheory:-cfrac(sqrt(p),periodic,quotients)[2]); %p A338785 if v <= N and A[v] = 0 then count:= count+1; A[v]:= n; fi %p A338785 od: %p A338785 convert(A,list); # _Robert Israel_, Nov 11 2020 %t A338785 Table[SelectFirst[Range[500], Length[Last[ContinuedFraction[Sqrt[Prime[#]]]]] == n &], {n, 60}] %Y A338785 Cf. A000720, A013646, A054269, A059800. %K A338785 nonn %O A338785 1,2 %A A338785 _Ilya Gutkovskiy_, Nov 08 2020