cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338795 Each term of A003215 (centered hexagonal numbers) is multiplied by the corresponding term of A003154 (centered dodecagonal numbers).

This page as a plain text file.
%I A338795 #36 Sep 01 2025 12:25:40
%S A338795 1,91,703,2701,7381,16471,32131,56953,93961,146611,218791,314821,
%T A338795 439453,597871,795691,1038961,1334161,1688203,2108431,2602621,3178981,
%U A338795 3846151,4613203,5489641,6485401,7610851,8876791,10294453,11875501,13632031,15576571,17722081,20081953
%N A338795 Each term of A003215 (centered hexagonal numbers) is multiplied by the corresponding term of A003154 (centered dodecagonal numbers).
%C A338795 The digital root (A010888) of each term is 1.
%H A338795 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A338795 a(n) = A003215(n)*A003154(n).
%F A338795 a(n) = 18*n^4 - 36*n^3 + 27*n^2 - 9*n + 1.
%F A338795 From _Elmo R. Oliveira_, Sep 01 2025: (Start)
%F A338795 G.f.: -x*(1 + 86*x + 258*x^2 + 86*x^3 + x^4)/(x - 1)^5.
%F A338795 E.g.f.: -1 + exp(x)*(1 + 45*x^2 + 72*x^3 + 18*x^4).
%F A338795 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5. (End)
%e A338795 The centered hexagonal number of 4 is 37, and the centered dodecagonal number of 4 is 73, so the fourth term of the series is 37*73 = 2701.
%t A338795 LinearRecurrence[{5,-10,10,-5,1},{1,91,703,2701,7381},40] (* _Harvey P. Dale_, May 13 2022 *)
%Y A338795 Cf. A003154, A003215, A010888.
%K A338795 nonn,easy,changed
%O A338795 1,2
%A A338795 _David Z Crookes_, Nov 09 2020