This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338798 #46 Jan 20 2021 05:55:40 %S A338798 0,2,12,28,100,90,392,408,792,810,2420,1356,4732,3346,4560,6320,13872, %T A338798 7506,21660,12140,18900,21802,46552,22008,53000,43290,61668,49980, %U A338798 117740,48450,153760,100192,123552,129506,169260,111420,312132,203642,245544,195640 %N A338798 a(n) = Sum_{k=1..n-1} lcm(lcm(n, k), lcm(n, n-k)). %H A338798 Sebastian Karlsson, <a href="/A338798/b338798.txt">Table of n, a(n) for n = 1..10000</a> %H A338798 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a> %F A338798 a(n) = n*Sum_{k=1..n-1} k*(n-k)/gcd(n,k)^2. %F A338798 a(n) = (1/6)*n*Sum_{d|n} d*(d*phi(d) - A023900(d)). %F A338798 a(p^e) = (1/6)*p^(e+1)*(p^e-1)*(p^(e+1) + p^(2*e+1) + p^2 + 2*p + 1)/(p^2 + p + 1). %F A338798 a(prime(n)) = A138421(n). - _Michel Marcus_, Jan 20 2021 %t A338798 a[n_] := Sum[LCM[LCM[n, k], LCM[n, n - k]], {k, 1, n - 1}]; %t A338798 Table[a[n], {n, 1, 40}] (* _Robert P. P. McKone_, Jan 18 2021 *) %o A338798 (Python) %o A338798 from math import gcd %o A338798 for n in range(1, 41): %o A338798 print(n*sum([k*(n-k)//(gcd(n,k)**2) for k in range(1, n)]), end=', ') %o A338798 (PARI) a(n) = sum(k=1, n-1, lcm(lcm(n, k), lcm(n, n-k))); \\ _Michel Marcus_, Jan 18 2021 %Y A338798 Cf. A000010, A006580, A023900, A051193, A057661, A138421. %K A338798 nonn %O A338798 1,2 %A A338798 _Sebastian Karlsson_, Jan 18 2021