A338824 Lexicographically earliest sequence of nonnegative integers such that for any distinct m and n, a(m) OR a(m+1) <> a(n) OR a(n+1) (where OR denotes the bitwise OR operator).
0, 0, 1, 2, 0, 4, 1, 6, 0, 8, 1, 10, 0, 12, 1, 14, 0, 16, 1, 18, 0, 20, 1, 22, 0, 24, 1, 26, 0, 28, 1, 30, 0, 32, 1, 34, 0, 36, 1, 38, 0, 40, 1, 42, 0, 44, 1, 46, 0, 48, 1, 50, 0, 52, 1, 54, 0, 56, 1, 58, 0, 60, 1, 62, 0, 64, 1, 66, 0, 68, 1, 70, 0, 72, 1, 74
Offset: 1
Examples
The first terms, alongside a(n) OR a(n+1), are: n a(n) a(n) OR a(n+1) -- ---- -------------- 1 0 0 2 0 1 3 1 3 4 2 2 5 0 4 6 4 5 7 1 7 8 6 6 9 0 8 10 8 9 11 1 11 12 10 10
Links
- Rémy Sigrist, C program for A338824
Programs
-
C
See Links section.
-
Mathematica
Block[{a = {0, 0}, b = {0}}, Do[Block[{k = 0, m}, While[! FreeQ[b, Set[m, BitOr @@ {a[[-1]], k}]], k++]; AppendTo[a, k]; AppendTo[b, m]], {i, 3, 76}]; a] (* Michael De Vlieger, Nov 12 2020 *)
Formula
a(2*n) = 2*n-2 for any n > 0.
a(4*n+1) = 0 for any n >= 0.
a(4*n+3) = 1 for any n >= 0.
a(n) OR a(n+1) = A116966(n-2) for any n > 1.