This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338825 #20 Jan 09 2021 02:11:54 %S A338825 12,8,120,84,24,448,280,28,368,256,48,32,1332,1440,540,72,1160,1380, %T A338825 500,220,40,40,2992,5280,2816,748,44,3288,4272,1608,672,192,7176, %U A338825 14040,8684,3120,624,156,8120,12460,7084,2968,1064,532,84,14820,34020,22620,7560,2580,720,120 %N A338825 Irregular table read by rows: The number of k-faced polyhedra, where k >= 4, created when an n-bipyramid, formed from two n-gonal pyraminds joined at the base, is internally cut by all the planes defined by any three of its vertices. %C A338825 See A338809 for further details and images for this sequence. %C A338825 The author thanks _Zach J. Shannon_ for assistance in producing the images for this sequence. %H A338825 Hyung Taek Ahn and Mikhail Shashkov, <a href="https://cnls.lanl.gov/~shashkov/papers/ahn_geometry.pdf">Geometric Algorithms for 3D Interface Reconstruction</a>. %H A338825 Scott R. Shannon, <a href="/A338825/a338825.jpg">5-bipyramid showing the 120 polyhedra post-cutting and exploded</a>. Each piece has been moved away from the origin by a distance proportional to the average distance of its vertices from the origin. All 120 polyhedra have 4 faces, shown in red. %H A338825 Scott R. Shannon, <a href="/A338825/a338825_1.jpg">5-bipyramid, seen from above, showing the 120 polyhedra post-cutting and exploded</a>. %H A338825 Scott R. Shannon, <a href="/A338825/a338825_2.jpg">20-bipyramid, showing the 69160 4-faced polyhedra</a>. %H A338825 Scott R. Shannon, <a href="/A338825/a338825_3.jpg">20-bipyramid, showing the 123040 5-faced polyhedra</a>. %H A338825 Scott R. Shannon, <a href="/A338825/a338825_4.jpg">20-bipyramid, showing the 86240 6-faced polyhedra</a>. %H A338825 Scott R. Shannon, <a href="/A338825/a338825_5.jpg">20-bipyramid, showing the 46080 7-faced polyhedra</a>. %H A338825 Scott R. Shannon, <a href="/A338825/a338825_6.jpg">20-bipyramid, showing the 17600 8-faced polyhedra</a>. %H A338825 Scott R. Shannon, <a href="/A338825/a338825_7.jpg">20-bipyramid, showing the 5920 9-faced polyhedra</a>. %H A338825 Scott R. Shannon, <a href="/A338825/a338825_8.jpg">20-bipyramid, showing the 320 11-faced polyhedra</a> %H A338825 Scott R. Shannon, <a href="/A338825/a338825_9.jpg">20-bipyramid, showing the 1920 10-faced and the 320 12-faced polyhedra</a>. These are colored white and black respectively. These are not visible on the surface of the 20-bipyramid. %H A338825 Scott R. Shannon, <a href="/A338825/a338825_10.jpg">20-bipyramid, showing all 350600 polyhedra</a>. %H A338825 Scott R. Shannon, <a href="/A338825/a338825.png">20-bipyramid from above, slightly exploded, showing the 69160 4-faced polyhedra</a>. %H A338825 Scott R. Shannon, <a href="/A338825/a338825_1.png">20-bipyramid from the side, slightly exploded and colored white, showing the 69160 4-faced polyhedra</a>. %H A338825 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Dipyramid.html">Dipyramid</a>. %H A338825 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bipyramid">Bipyramid</a>. %F A338825 Sum of row n = A338809(n). %e A338825 The 4-bipyramid (an octahedron) is cut with 3 internal planes defined by all 3-vertex combinations of its 6 vertices. This leads to the creation of 8 4-faced polyhedra. See A338622. %e A338825 The 7-bipyramid is cut with 36 internal planes defined by all 3-vertex combinations of its 9 vertices. This leads to the creation of 448 4-faced polyhedra, 280 5-faced polyhedra, and 28 6-faced polyhedra, 756 polyhedra in all. %e A338825 The table begins: %e A338825 12; %e A338825 8; %e A338825 120; %e A338825 84, 24; %e A338825 448, 280, 28; %e A338825 368, 256, 48, 32; %e A338825 1332, 1440, 540, 72; %e A338825 1160, 1380, 500, 220, 40, 40; %e A338825 2992, 5280, 2816, 748, 44; %e A338825 3288, 4272, 1608, 672, 192; %e A338825 7176, 14040, 8684, 3120, 624, 156; %e A338825 8120, 12460, 7084, 2968, 1064, 532, 84; %e A338825 14820, 34020, 22620, 7560, 2580, 720, 120; %e A338825 18528, 28480, 18560, 9024, 2592, 1024, 384, 64; %e A338825 32028, 66708, 51136, 22372, 7956, 1836, 136; %e A338825 35280, 53028, 37080, 14364, 4104, 360, 180, 144; %e A338825 57380, 131480, 104576, 50616, 17328, 4256, 76; %e A338825 69160, 123040, 86240, 46080, 17600, 5920, 1920, 320, 320; %Y A338825 Cf. A338809 (number of polyhedra), A338622 (Platonic solids), A333543 (n-dimensional cube). %K A338825 nonn,more,tabf %O A338825 3,1 %A A338825 _Scott R. Shannon_, Nov 11 2020