This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338837 #21 Nov 17 2020 14:10:37 %S A338837 2,2,6,7,9,9,6,2,6,7,7,0,6,7,2,4,2,4,7,3,2,8,5,5,3,2,8,0,7,2,5,3,7,1, %T A338837 7,7,4,5,2,7,0,4,2,2,5,4,4,0,0,8,1,8,7,7,2,2,7,5,5,9,0,8,2,9,0,5,0,7, %U A338837 8,3,7,4,0,7,5,1,4,6,9,5,7,3,5,7,2,1,7,3,8,3,6,2,9,0,9,9,2,5,7,0,0,4,2,7,3,1,5,8,7,3,1,7,1,1,5,7,6,5,8,8,1,9,3,4,0,9,7,2,8,1,1,3,9,0 %N A338837 Decimal expansion of the smallest positive number 'c' such that numbers of the form 1+floor(c^(n^1.5)) for all n >= 0 are distinct primes. %C A338837 Assuming Cramer's conjecture on largest prime gaps, it can be proved that there exists at least one constant 'c' such that all a(n) are primes for n as large as required. The constant giving the smallest growth rate is c=2.2679962677067242473285532807253717745270422544... %C A338837 Algorithm to generate the smallest constant 'c' and the associated prime number sequence a(n)=1+floor(c^(n^1.5)). %C A338837 0. n=0, a(0)=2, c=2, d=1.5 %C A338837 1. n=n+1 %C A338837 2. b=1+floor(c^(n^d)) %C A338837 3. p=smpr(b) smallest prime >= b %C A338837 4. If p=b then a(n)=p, go to 1. %C A338837 5. c=(p-1)^(1/n^d) %C A338837 6. a(n)=p %C A338837 7. k=1 %C A338837 8. b=1+floor(c^(k^d)) %C A338837 9. If b<>a(k) then p=smpr(b), n=k, go to 5. %C A338837 10. If k<n-1 then k=k+1, go to 8. %C A338837 11. go to 1. %C A338837 The precision of 'c' with the 135 digits listed above is sufficient to calculate the first 50 terms of the prime sequence. The prime number given by the term of index n=49 has 121 decimal digits. %e A338837 2.26799626770672424732855328072537177452704225440081877227559082905078374075... %o A338837 (PARI) %o A338837 c(n=40, prec=100)={ %o A338837 my(curprec=default(realprecision)); %o A338837 default(realprecision, max(prec, curprec)); %o A338837 my(a=List([2]), d=1.5, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); %o A338837 for(j=1, n-1, %o A338837 b=1+floor(c^(j^d)); %o A338837 until(ok, %o A338837 ok=1; %o A338837 p=smpr(b); %o A338837 listput(a,p,j+1); %o A338837 if(p!=b, %o A338837 c=(p-1)^(j^(-d)); %o A338837 for(k=1,j-2, %o A338837 b=1+floor(c^(k^d)); %o A338837 if(b!=a[k+1], %o A338837 ok=0; %o A338837 j=k; %o A338837 break; %o A338837 ); %o A338837 ); %o A338837 ); %o A338837 ); %o A338837 ); %o A338837 default(realprecision, curprec); %o A338837 return(c); %o A338837 }; %o A338837 digits(floor(c(55,200)*10^50)) %o A338837 \\ _François Marques_, Nov 17 2020 %Y A338837 Cf. A338613, A338850. %K A338837 nonn,cons %O A338837 1,1 %A A338837 _Bernard Montaron_, Nov 11 2020