This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338850 #12 Nov 17 2020 14:13:29 %S A338850 2,3,1,2,1,2,1,1,1,1,3,1,2,13,6,1,3,5,1,5,1,7,17,1,3,1,11,18,3,1,2,1, %T A338850 2,1,2,17,15,1,69,3,1,2,1,1,1,1,33,1,3,2,4,17,1,3,2,2,1,2,6,1,11,3,2, %U A338850 1,1,1,17,1,7,5,2,2,2,84,1,8,3,1,1,22,3698,2,2,1,1,2,1,7,2,1,1,1,1,3,1,5,15,1,3,1,2,1,1,1,1,2,1,16,1,7,2,2,3,1,9 %N A338850 Continued fraction expansion of the smallest constant 'c' such that the numbers 1+floor(c^(n^1.5)) are distinct primes for all n >= 0. %e A338850 2+1/(3+1/(1+1/(2+1/(1+1/(2+1/(1+1/(1+1/(1+1/(1+1/(3+1/(1+1/(2+1/(13+1/(6]= 590652/260429 = 2.26799626769... The constant 'c' is equal to 2.267996267706724247328553280725371774527042254400818772275… %o A338850 (PARI) %o A338850 c(n=40, prec=100)={ %o A338850 my(curprec=default(realprecision)); %o A338850 default(realprecision, max(prec, curprec)); %o A338850 my(a=List([2]), d=1.5, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); %o A338850 for(j=1, n-1, %o A338850 b=1+floor(c^(j^d)); %o A338850 until(ok, %o A338850 ok=1; %o A338850 p=smpr(b); %o A338850 listput(a,p,j+1); %o A338850 if(p!=b, %o A338850 c=(p-1)^(j^(-d)); %o A338850 for(k=1,j-2, %o A338850 b=1+floor(c^(k^d)); %o A338850 if(b!=a[k+1], %o A338850 ok=0; %o A338850 j=k; %o A338850 break; %o A338850 ); %o A338850 ); %o A338850 ); %o A338850 ); %o A338850 ); %o A338850 default(realprecision, curprec); %o A338850 return(c); %o A338850 }; %o A338850 contfrac(c(50,200),115) %o A338850 \\ _François Marques_, Nov 17 2020 %Y A338850 Cf. A338613, A338837. %K A338850 nonn,cofr %O A338850 1,1 %A A338850 _Bernard Montaron_, Nov 12 2020