cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338856 Decimal expansion of Sum_{k>=0} binomial(4*k,2*k)^2 / (2^(8*k) * (2*k + 1)).

Original entry on oeis.org

1, 0, 8, 9, 8, 6, 6, 7, 3, 2, 2, 9, 0, 7, 4, 7, 9, 3, 5, 3, 2, 5, 8, 0, 1, 7, 9, 5, 8, 0, 7, 2, 9, 6, 3, 6, 0, 4, 8, 5, 5, 1, 6, 9, 7, 7, 7, 7, 8, 1, 3, 6, 3, 3, 9, 8, 3, 1, 9, 6, 0, 9, 4, 7, 2, 0, 7, 0, 5, 7, 8, 3, 6, 7, 6, 8, 3, 0, 4, 4, 5, 6, 1, 3, 2, 4, 1, 3, 2, 9, 7, 9, 6, 0, 2, 7, 6, 2, 1, 5, 6, 7, 8, 2, 5
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 12 2020

Keywords

Examples

			1.0898667322907479353258017958072963604855169777781363398319609472070578367683...
		

References

  • Pablo Fernandez Refolio, Problem 12180, The American Mathematical Monthly 127, April 2020, p. 373.

Crossrefs

Programs

  • Maple
    evalf(2/Pi + sqrt(Pi/2) / GAMMA(3/4)^2 - sqrt(2) * GAMMA(3/4)^2 / Pi^(3/2), 120);
  • Mathematica
    RealDigits[2/Pi + Sqrt[Pi/2]/Gamma[3/4]^2 - Sqrt[2]*Gamma[3/4]^2/Pi^(3/2), 10, 100][[1]]
    N[HypergeometricPFQ[{1/4, 1/4, 3/4, 3/4}, {1/2, 1, 3/2}, 1], 120]

Formula

Equals 2/Pi + sqrt(Pi/2) / Gamma(3/4)^2 - sqrt(2) * Gamma(3/4)^2 / Pi^(3/2).
Equals hypergeom([1/4, 1/4, 3/4, 3/4], [1/2, 1, 3/2], 1).