A338859 Square array A(m,k) is the number of unicyclic graphs with m trees of k nodes; m,k >= 0, read by falling antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 4, 3, 1, 1, 0, 1, 9, 10, 4, 1, 1, 0, 1, 20, 45, 20, 6, 1, 1, 0, 1, 48, 210, 165, 55, 8, 1, 1, 0, 1, 115, 1176, 1540, 1035, 136, 13, 1, 1, 0, 1, 286, 6670, 19600, 22155, 6273, 430, 18, 1, 1, 0, 1, 719, 41041, 260130, 692076, 324008, 46185, 1300, 30, 1, 1, 0
Offset: 0
Examples
A begins, ---+------------------------------------------------------------------------------ m/k|0 1 2 3 4 5 6 7 8 9 ---+------------------------------------------------------------------------------ 0 |1 1 1 1 1 1 1 1 1 1 ... 1 |0 1 1 2 4 9 20 48 115 286 ... 2 |0 1 1 3 10 45 210 1176 6670 41041 ... 3 |0 1 1 4 20 165 1540 19600 260130 3939936 ... 4 |0 1 1 6 55 1035 22155 692076 22247785 842202361 ... 5 |0 1 1 8 136 6273 324008 25535712 2012117671 191362445560 ... 6 |0 1 1 13 430 46185 5376070 1020580232 192799298140 45606942211831 ... 7 |0 1 1 18 1300 344925 91508580 41936107248 19000229453710 11179807512382366 ... ...| ... ... ... ... ... ---+------------------------------------------------------------------------------ The A(3,3) = 4 unicyclic graphs with 3 trees of 3 nodes 0 0 | | 0 0 0 0 0 0 | \ / | \ / 0 0 0 0 /*\ /*\ /*\ /*\ /***\ /***\ /***\ /***\ 0-----0 0---- 0 0-----0 0-----0 / \ / \ / \ / \ / \ | | 0 0 0 0 0 0 0 0 0 0 0 0 / \ | | 0 0 0 0 The graphs above are also representations of bracelets with m = 3 beads using up to A000081(k=3) = 2 colors.
Links
- Index entries for sequences related to bracelets
- Washington Bomfim, Illustraction of graphs counted by A(2,k), k=2,3
- Eric Weisstein's World of Mathematics, Sunlet graph
Programs
-
PARI
\\ From Robert A. Russell formula of A321791. A(m, k)={ if( m == 0, return(1), (k^((m+1)>>1)+k^ceil((m+1)/2)) / 4 + sumdiv(m, d, eulerphi(d)*k^(m/d) )/(m<<1)) }; seq(max_m) = { my(f = vector(max_m), kk, mm, ff); f[1] = 1; for(j=1, max_m - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k, d, d * f[d]) * f[j-k+1])); print1(A(0,0) ", "); for(k = 1, max_m, kk = k; mm = 0; ff = f[kk]; until(A(mm,ff)==0, print1(A(mm,ff)", "); mm++; kk--; if(kk==0, ff=0, ff = f[kk]) ); print1("0, ")) };
Comments