cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338860 The excess of the number of partitions of n with more odd parts than even parts over the number of partitions of n with more even parts than odd parts.

This page as a plain text file.
%I A338860 #33 Sep 09 2022 09:29:23
%S A338860 0,1,0,2,1,3,4,6,8,11,17,21,30,38,53,68,90,115,150,192,243,312,390,
%T A338860 496,613,775,951,1193,1456,1810,2200,2715,3285,4026,4856,5909,7106,
%U A338860 8595,10301,12394,14809,17728,21118,25171,29891,35489,42018,49702,58678,69180
%N A338860 The excess of the number of partitions of n with more odd parts than even parts over the number of partitions of n with more even parts than odd parts.
%H A338860 Alois P. Heinz, <a href="/A338860/b338860.txt">Table of n, a(n) for n = 0..2000</a>
%H A338860 B. Kim, E. Kim, and J. Lovejoy, <a href="https://doi.org/10.1016/j.ejc.2020.103159">Parity bias in partitions</a>, European J. Combin., 89 (2020), 103159, 19 pp.
%F A338860 G.f.: (Product_{k>=1} 1/(1-x^(2*k-1)))*Sum_{n>=1} q^(2*n^2-n)*(1-q^n)/Product_{k=1..n} (1-q^(2*k))^2.
%F A338860 a(n) = A108950(n) - A108949(n).
%e A338860 The 3 partitions of 4 with more odd parts than even parts are [3,1], [2,1,1], and [1,1,1,1], while the 2 partitions of 4 with more even parts than odd parts are [4] and [2,2].   Hence a(4) = 3-2 = 1.
%p A338860 b:= proc(n, i, t) option remember; `if`(n=0, signum(t), `if`(i<1, 0,
%p A338860       b(n, i-1, t)+ b(n-i, min(n-i, i), t+(2*irem(i, 2)-1))))
%p A338860     end:
%p A338860 a:= n-> b(n$2, 0):
%p A338860 seq(a(n), n=0..55);  # _Alois P. Heinz_, Jan 14 2021
%t A338860 b[n_, i_, t_] := b[n, i, t] = If[n == 0, Sign[t], If[i < 1, 0,
%t A338860    b[n, i-1, t] + b[n-i, Min[n-i, i], t + (2*Mod[i, 2]-1)]]];
%t A338860 a[n_] := b[n, n, 0];
%t A338860 Table[a[n], {n, 0, 55}] (* _Jean-François Alcover_, Sep 09 2022, after _Alois P. Heinz_ *)
%o A338860 (PARI) for(n=0,43,my(me=0,mo=0);forpart(v=n,my(x=Vec(v),se=sum(k=1,#x,x[k]%2==0),so=sum(k=1,#x,x[k]%2>0));me+=(se>so);mo+=(so>se));print1(mo-me,", ")) \\ _Hugo Pfoertner_, Jan 13 2021
%Y A338860 Cf. A108949, A108950.
%K A338860 nonn
%O A338860 0,4
%A A338860 _Jeremy Lovejoy_, Jan 12 2021