This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338861 #46 Sep 06 2024 17:27:49 %S A338861 1,2,6,15,42,143,399,1190,4209,10920,37245,109886,339745,1037186, %T A338861 3205734,9784263,29837784,93313919,289627536 %N A338861 a(n) is the largest area of a rectangle which can be dissected into n squares with integer sides s_i, i = 1 .. n, and gcd(s_1,...,s_n) = 1. %C A338861 A219158 gives the minimum number of squares to tile an i x j rectangle. a(n) is found by checking all rectangles (i,j) for which A219158 has a dissection into n squares. %C A338861 Due to the potential counterexamples to the minimal squaring conjecture (see MathOverflow link), terms after a(19) have to be considered only as lower bounds: a(20) >= 876696755, a(21) >= 2735106696. - _Hugo Pfoertner_, Nov 17 2020, Apr 02 2021 %H A338861 Stuart Anderson, <a href="http://www.squaring.net/sq/sr/spsr/spsr.html">Catalogues of Simple Perfect Squared Rectangles</a>. %H A338861 Stuart Anderson, <a href="http://www.squaring.net/sq/sr/sisr/sisr.html">Simple Imperfect Squared Rectangles, orders 9 to 24</a>. %H A338861 Bertram Felgenhauer, <a href="http://int-e.eu/~bf3/squares/">Filling rectangles with integer-sided squares</a>. %H A338861 MathOverflow, <a href="https://mathoverflow.net/questions/116382/tiling-a-rectangle-with-the-smallest-number-of-squares/">tiling a rectangle with the smallest number of squares</a>, answer by Ed Pegg Jr, Jul 09 2017. %H A338861 Rainer Rosenthal, <a href="/A338861/a338861.png">Rectangle tiled by 19 squares with maximum area a(19)</a> %e A338861 a(6) = 11*13 = 143. %e A338861 Dissection of the 11 X 13 rectangle into 6 squares: %e A338861 . %e A338861 +-----------+-------------+ %e A338861 | | | %e A338861 | | | %e A338861 | 6 X 6 | 7 X 7 | %e A338861 | | | %e A338861 | | | %e A338861 +---------+-+ | %e A338861 | +-+-----+-------+ %e A338861 | 5 X 5 | | | %e A338861 | | 4 X 4 | 4 X 4 | %e A338861 | | | | %e A338861 +---------+-------+-------+ %e A338861 . %e A338861 a(19) = 16976*17061 = 289627536. %e A338861 Dissection of the 16976 X 17061 rectangle into 19 squares: %e A338861 . %e A338861 +----------------+-------------+ %e A338861 | | | %e A338861 | | | %e A338861 | | 7849 | %e A338861 | 9212 | | %e A338861 | | | %e A338861 | | | %e A338861 | |------+------| %e A338861 |________________| | | %e A338861 | | see | 4109 | %e A338861 | |Rosenthal| | %e A338861 | | link +-+------+ %e A338861 | 7764 |-------| | %e A338861 | | | 5018 | %e A338861 | | 4279 | | %e A338861 | | | | %e A338861 +-------------+-------+--------+ %e A338861 . %Y A338861 Cf. A219158, A340726, A340920. %Y A338861 This sequence and A089047 are effectively analogs for dissecting (or tiling) rectangles and squares respectively. Analogs using equilateral triangular tiles are A014529 and A290821 respectively. %K A338861 nonn,hard,more %O A338861 1,2 %A A338861 _Rainer Rosenthal_, Nov 12 2020 %E A338861 a(11)-a(17) from _Hugo Pfoertner_ based on data from squaring.net website, Nov 17 2020 %E A338861 a(18) from _Hugo Pfoertner_, Feb 18 2021 %E A338861 a(19) from _Hugo Pfoertner_, Apr 02 2021