This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338879 #67 Dec 23 2020 08:42:39 %S A338879 1,3,2,5,11,3,7,11,9,4,9,37,31,27,5,11,28,8,7,19,6,13,79,69,61,55,51, %T A338879 7,15,53,47,21,19,35,33,8,17,137,41,37,101,31,29,83,9,19,86,78,71,13, %U A338879 12,56,53,51,10,21,211,193,177,163,151,141,133,127,123,11,23,127,39,18,50,31,29,41,13,25,73,12 %N A338879 Denominators in a set of expansions of the single-term Machin-like formula for Pi. %C A338879 Numerators are A338878. %C A338879 Abrarov et al. give an identity arctan(n*x) = Sum_{m=1..n} arctan(x / (1 + (m-1)*m*x^2)). At x=1/n this identity provides set of expansions of the single-term Machin-like formula for Pi in form Pi/4 = arctan(1) = Sum_{m=1..n} arctan(n/((m-1)*m + n^2)). For m = n - k + 1 at k=1..n the fractions n / ((m-1)*m + n^2) constitute the triangle with rows in ascending order: %C A338879 k= 1 2 3 4 5 6 %C A338879 n=1: 1; %C A338879 n=2: 1/3, 1/2; %C A338879 n=3: 1/5, 3/11, 1/3; %C A338879 n=4: 1/7, 2/11, 2/9, 1/4; %C A338879 n=5: 1/9, 5/37, 5/31, 5/27, 1/5; %C A338879 n=6: 1/11, 3/28, 1/8, 1/7, 3/19, 1/6; %H A338879 Sanjar Abrarov, <a href="/A338879/b338879.txt">Table of n, a(n) for n = 1..120</a> %H A338879 Sanjar M. Abrarov, Rehan Siddiqui, Rajinder K. Jagpal, and Brendan M. Quine, <a href="https://arxiv.org/abs/2004.11711">Unconditional applicability of the Lehmer's measure to the two-term Machin-like formula for pi</a>, arXiv:2004.11711 [math.GM], 2020. %F A338879 T(n,k) = denominator of n / ((n-k)*(n-k+1) + n^2), for n>=1 and 1 <= k <= n. %F A338879 Pi/4 = Sum_{k=1..n} arctan(A338878(n,k) / T(n,k)). %e A338879 The triangle T(n,k) begins: %e A338879 k= 1 2 3 4 5 6 %e A338879 n=1: 1; %e A338879 n=2: 3, 2; %e A338879 n=3: 5, 11, 3; %e A338879 n=4: 7, 11, 9, 4; %e A338879 n=5: 9, 37, 31, 27, 5; %e A338879 n=6: 11, 28, 8, 7, 19, 6; %e A338879 For example, at n = 3 the expansion formula is Pi/4 = arctan(1/5) + arctan(3/11) + arctan(1/3) and the corresponding sequence in the denominators is 5,11,3. %t A338879 (*Define variable*) %t A338879 PiOver4[m_] := Sum[ArcTan[m/((k - 1)*k + m^2)], {k, 1, m}]; %t A338879 (*Expansions*) %t A338879 m := 1; %t A338879 While[m <= 10, %t A338879 If[m == 1, Print["\[Pi]/4 = ArcTan[1/1]"], %t A338879 Print["\[Pi]/4 = ", PiOver4[m]]]; m = m + 1]; %t A338879 (*Verification*) %t A338879 m := 1; %t A338879 While[m <= 10, Print[PiOver4[m] == Pi/4]; m = m + 1]; %t A338879 (*Denominators*) %t A338879 For[n = 1, n <= 10, n++, {k := 1; sq := {}; %t A338879 While[n >= k, AppendTo[sq, Denominator[n/((n - k)*(n - k %t A338879 + 1) + n^2)]]; k++]}; Print[sq]]; %o A338879 (PARI) T(n, k) = if (n>=k, denominator(n/((n - k)*(n - k + 1) + n^2))) %o A338879 matrix(10, 10, n, k, T(n, k)) \\ _Michel Marcus_, Nov 14 2020 %Y A338879 Cf. A338878 (numerators), A003881 (Pi/4). %K A338879 nonn,frac,tabl %O A338879 1,2 %A A338879 _Sanjar Abrarov_, Nov 13 2020