cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338889 a(n) = L(L(L(n))) mod L(L(n)), where L = Lucas numbers = A000032.

This page as a plain text file.
%I A338889 #9 Nov 14 2020 09:49:13
%S A338889 1,0,3,1,1,1,0,1,1,29,7,1,
%T A338889 19679776435706023589554718882448088434898811874077010905231927243854,
%U A338889 1,7
%N A338889 a(n) = L(L(L(n))) mod L(L(n)), where L = Lucas numbers = A000032.
%C A338889 a(21) = 2992285359..7163788371 has 5090 decimal digits.
%H A338889 Alois P. Heinz, <a href="/A338889/b338889.txt">Table of n, a(n) for n = 0..20</a>
%F A338889 a(n) = A262361(n) mod A005371(n).
%p A338889 b:= proc(n) local r, M, p; r, M, p:=
%p A338889       <<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
%p A338889       do if irem(p, 2, 'p')=1 then r:=
%p A338889         `if`(nargs=1, r.M, r.M mod args[2]) fi;
%p A338889          if p=0 then break fi; M:=
%p A338889         `if`(nargs=1, M.M, M.M mod args[2])
%p A338889       od; (r.<<2, 1>>)[1$2]
%p A338889     end:
%p A338889 a:= n-> (h-> b(h$2) mod h)(b(b(n))):
%p A338889 seq(a(n), n=0..15);
%Y A338889 Cf. A000032, A005371, A262361, A274996, A338638, A338736.
%K A338889 nonn
%O A338889 0,3
%A A338889 _Alois P. Heinz_, Nov 14 2020