This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338896 #46 Apr 17 2023 15:51:58 %S A338896 0,2,0,4,4,0,6,8,6,0,8,12,12,8,0,10,16,18,16,10,0,12,20,24,24,20,12,0, %T A338896 14,24,30,32,30,24,14,0,16,28,36,40,40,36,28,16,0,18,32,42,48,50,48, %U A338896 42,32,18,0,20,36,48,56,60,60,56,48,36,20,0 %N A338896 Inradii of Pythagorean triples of A338895. %C A338896 Without the 0's, the sequence becomes 2*A003991. The 0 indices are triangular numbers A000217. %H A338896 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a> %F A338896 When m and n define a row of triples in A338275 that gives rise to a triple (a row) of A338895, the current term corresponding to such a row is (m-n-1)*n/2. %F A338896 If [a,b,c] is the n-th row of A338895, then a(n) = a*b/(a+b+c). %F A338896 T(n, k) = 2*k*(n - k). Follows from the first comment. - _Peter Luschny_, Apr 17 2023 %e A338896 m 3 %e A338896 n 2 [0,4,4] 0 %e A338896 ------------------ %e A338896 m 5 %e A338896 n 2 [6,8,10] 2 %e A338896 n 4 [0,16,16] 0 %e A338896 ------------------ %e A338896 m 7 %e A338896 n 2 [16,12,20] 4 %e A338896 n 4 [10,24,26] 4 %e A338896 n 6 [0,36,36] 0 %e A338896 ------------------ %e A338896 m 9 %e A338896 n 2 [30,16,34] 6 %e A338896 n 4 [24,32,40] 8 %e A338896 n 6 [14,48,50] 6 %e A338896 n 8 [0,64,64] 0 %e A338896 ------------------. %e A338896 The 7th row of A338895 is [30,16,34], so a(7) = 30*16/(30+16+34) = 6. %e A338896 As a triangle: %e A338896 0 %e A338896 2, 0 %e A338896 4, 4, 0 %e A338896 6, 8, 6, 0 %e A338896 8, 12, 12, 8, 0 %e A338896 10, 16, 18, 16, 10, 0 %e A338896 12, 20, 24, 24, 20, 12, 0, %t A338896 Table[#1 #2/Total[{##}] & @@ {((#1 - 1)^2 - #2^2)/2, (#1 - 1) #2, ((#1 - 1)^2 + #2^2)/2} & @@ {m, n}, {m, 3, 23, 2}, {n, 2, m, 2}] // Flatten (* _Michael De Vlieger_, Dec 04 2020 *) %o A338896 (PARI) lista(mm) = forstep (m=3, mm, 2, forstep (n=2, m, 2, my(v=[((m-1)^2 - n^2)/2, (m-1)*n, ((m-1)^2 + n^2)/2]); print1(v[1]*v[2]/vecsum(v), ", "))); \\ _Michel Marcus_, Dec 04 2020 %Y A338896 Cf. A338275, A338895. %Y A338896 Cf. A003991 (see 2nd comment). %K A338896 nonn,tabl %O A338896 1,2 %A A338896 _David Lovler_, Nov 14 2020