A338902 Number of integer partitions of the n-th semiprime into semiprimes.
1, 1, 1, 2, 3, 2, 4, 7, 7, 10, 17, 25, 21, 34, 34, 73, 87, 103, 149, 176, 206, 281, 344, 479, 725, 881, 1311, 1597, 1742, 1841, 2445, 2808, 3052, 3222, 6784, 9298, 11989, 14533, 15384, 17414, 18581, 19680, 28284, 35862, 38125, 57095, 60582, 64010, 71730, 76016
Offset: 1
Keywords
Examples
The a(1) = 1 through a(33) = 17 partitions of 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, where A-Z = 10-35: 4 6 9 A E F L M P Q X 64 A4 96 F6 994 FA M4 EA9 644 966 A66 L4 AA6 F99 9444 E44 A96 E66 FE4 6664 F64 9944 L66 A444 9664 A664 P44 64444 94444 E444 9996 66644 AA94 A4444 E964 644444 F666 FA44 L444 96666 A9644 F6444 966444 9444444
Crossrefs
A002100 counts partitions into squarefree semiprimes.
A056768 uses primes instead of semiprimes.
A101048 counts partitions into semiprimes.
A338903 is the squarefree version.
A339112 includes the Heinz numbers of these partitions.
A037143 lists primes and semiprimes.
A320655 counts factorizations into semiprimes.
Programs
-
Mathematica
nn=100;Table[Length[IntegerPartitions[n,All,Select[Range[nn],PrimeOmega[#]==2&]]],{n,Select[Range[nn],PrimeOmega[#]==2&]}]
Comments