This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338904 #15 Dec 09 2020 12:06:39 %S A338904 4,6,9,10,14,15,21,22,25,26,33,35,34,39,49,55,38,51,65,77,46,57,85,91, %T A338904 121,58,69,95,119,143,62,87,115,133,169,187,74,93,145,161,209,221,82, %U A338904 111,155,203,247,253,289,86,123,185,217,299,319,323,94,129,205 %N A338904 Irregular triangle read by rows where row n lists all semiprimes whose prime indices sum to n. %C A338904 A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. %e A338904 Triangle begins: %e A338904 4 %e A338904 6 %e A338904 9 10 %e A338904 14 15 %e A338904 21 22 25 %e A338904 26 33 35 %e A338904 34 39 49 55 %e A338904 38 51 65 77 %e A338904 46 57 85 91 121 %e A338904 58 69 95 119 143 %e A338904 62 87 115 133 169 187 %e A338904 74 93 145 161 209 221 %e A338904 82 111 155 203 247 253 289 %e A338904 86 123 185 217 299 319 323 %e A338904 94 129 205 259 341 361 377 391 %t A338904 Table[Sort[Table[Prime[k]*Prime[n-k],{k,n/2}]],{n,2,10}] %Y A338904 A004526 gives row lengths. %Y A338904 A024697 gives row sums. %Y A338904 A087112 is a different triangle of semiprimes. %Y A338904 A098350 has antidiagonals with the same distinct terms as these rows. %Y A338904 A338905 is the squarefree case, with row sums A025129. %Y A338904 A338907/A338906 are the union of odd/even rows. %Y A338904 A339114/A339115 are the row minima/maxima. %Y A338904 A001358 lists semiprimes, with odd/even terms A046315/A100484. %Y A338904 A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484. %Y A338904 A014342 is the self-convolution of primes. %Y A338904 A037143 lists primes and semiprimes. %Y A338904 A056239 gives sum of prime indices (Heinz weight). %Y A338904 A062198 gives partial sums of semiprimes. %Y A338904 A084126 and A084127 give the prime factors of semiprimes. %Y A338904 A289182/A115392 list the positions of odd/even terms in A001358. %Y A338904 A332765 gives the greatest squarefree semiprime of weight n. %Y A338904 A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506. %Y A338904 A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900. %Y A338904 Cf. A000040, A001221, A001222, A005117, A112798, A320732, A332877, A338908, A338910, A338911, A339116. %K A338904 nonn,tabf %O A338904 2,1 %A A338904 _Gus Wiseman_, Nov 28 2020