This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338905 #12 Dec 06 2020 06:28:18 %S A338905 6,10,14,15,21,22,26,33,35,34,39,55,38,51,65,77,46,57,85,91,58,69,95, %T A338905 119,143,62,87,115,133,187,74,93,145,161,209,221,82,111,155,203,247, %U A338905 253,86,123,185,217,299,319,323,94,129,205,259,341,377,391,106,141 %N A338905 Irregular triangle read by rows where row n lists all squarefree semiprimes with prime indices summing to n. %C A338905 A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. %e A338905 Triangle begins: %e A338905 6 %e A338905 10 %e A338905 14 15 %e A338905 21 22 %e A338905 26 33 35 %e A338905 34 39 55 %e A338905 38 51 65 77 %e A338905 46 57 85 91 %e A338905 58 69 95 119 143 %e A338905 62 87 115 133 187 %e A338905 74 93 145 161 209 221 %e A338905 82 111 155 203 247 253 %e A338905 86 123 185 217 299 319 323 %t A338905 Table[Sort[Table[Prime[k]*Prime[n-k],{k,(n-1)/2}]],{n,3,10}] %Y A338905 A004526 (shifted right) gives row lengths. %Y A338905 A025129 (shifted right) gives row sums. %Y A338905 A056239 gives sum of prime indices (Heinz weight). %Y A338905 A339116 is a different triangle whose diagonals are these rows. %Y A338905 A338904 is the not necessarily squarefree version, with row sums A024697. %Y A338905 A338907/A338908 are the union of odd/even rows. %Y A338905 A339114/A332765 are the row minima/maxima. %Y A338905 A001358 lists semiprimes, with odd/even terms A046315/A100484. %Y A338905 A005117 lists squarefree numbers. %Y A338905 A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484. %Y A338905 A087112 groups semiprimes by greater factor. %Y A338905 A168472 gives partial sums of squarefree semiprimes. %Y A338905 A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506. %Y A338905 A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900. %Y A338905 Cf. A000040, A001221, A014342, A098350, A112798, A320656, A338901, A338906, A339003, A339004, A339005, A339115. %K A338905 nonn,tabf %O A338905 3,1 %A A338905 _Gus Wiseman_, Nov 28 2020