This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338907 #25 Apr 22 2025 05:09:01 %S A338907 6,14,15,26,33,35,38,51,58,65,69,74,77,86,93,95,106,119,122,123,141, %T A338907 142,143,145,158,161,177,178,185,201,202,209,214,215,217,219,221,226, %U A338907 249,262,265,278,287,291,299,302,305,309,319,323,326,327,329,346,355 %N A338907 Semiprimes whose prime indices sum to an odd number. %C A338907 All terms are squarefree (A005117). %C A338907 A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. %C A338907 The semiprimes in A300063; the semiprimes in A332820. - _Peter Munn_, Dec 25 2020 %F A338907 Complement of A338906 in A001358. %e A338907 The sequence of terms together with their prime indices begins: %e A338907 6: {1,2} 95: {3,8} 202: {1,26} %e A338907 14: {1,4} 106: {1,16} 209: {5,8} %e A338907 15: {2,3} 119: {4,7} 214: {1,28} %e A338907 26: {1,6} 122: {1,18} 215: {3,14} %e A338907 33: {2,5} 123: {2,13} 217: {4,11} %e A338907 35: {3,4} 141: {2,15} 219: {2,21} %e A338907 38: {1,8} 142: {1,20} 221: {6,7} %e A338907 51: {2,7} 143: {5,6} 226: {1,30} %e A338907 58: {1,10} 145: {3,10} 249: {2,23} %e A338907 65: {3,6} 158: {1,22} 262: {1,32} %e A338907 69: {2,9} 161: {4,9} 265: {3,16} %e A338907 74: {1,12} 177: {2,17} 278: {1,34} %e A338907 77: {4,5} 178: {1,24} 287: {4,13} %e A338907 86: {1,14} 185: {3,12} 291: {2,25} %e A338907 93: {2,11} 201: {2,19} 299: {6,9} %t A338907 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A338907 Select[Range[100],PrimeOmega[#]==2&&OddQ[Total[primeMS[#]]]&] %o A338907 (Python) %o A338907 from math import isqrt %o A338907 from sympy import primepi, primerange %o A338907 def A338907(n): %o A338907 def bisection(f,kmin=0,kmax=1): %o A338907 while f(kmax) > kmax: kmax <<= 1 %o A338907 kmin = kmax >> 1 %o A338907 while kmax-kmin > 1: %o A338907 kmid = kmax+kmin>>1 %o A338907 if f(kmid) <= kmid: %o A338907 kmax = kmid %o A338907 else: %o A338907 kmin = kmid %o A338907 return kmax %o A338907 def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1))) %o A338907 return bisection(f,n,n) # _Chai Wah Wu_, Apr 03 2025 %Y A338907 A031368 looks at primes instead of semiprimes. %Y A338907 A098350 has this as union of odd-indexed antidiagonals. %Y A338907 A300063 looks at all numbers (not just semiprimes). %Y A338907 A338904 has this as union of odd-indexed rows. %Y A338907 A338906 is the even version. %Y A338907 A001358 lists semiprimes, with odd/even terms A046315/A100484. %Y A338907 A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484. %Y A338907 A056239 gives the sum of prime indices (Heinz weight). %Y A338907 A084126 and A084127 give the prime factors of semiprimes. %Y A338907 A087112 groups semiprimes by greater factor. %Y A338907 A289182/A115392 list the positions of odd/even terms in A001358. %Y A338907 A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506. %Y A338907 A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900. %Y A338907 A338908 lists squarefree semiprimes of even weight. %Y A338907 A339114/A339115 give the least/greatest semiprime of weight n. %Y A338907 Cf. A000040, A001222, A014342, A024697, A062198, A112798, A300061, A319242, A320655, A338910, A339003. %Y A338907 Subsequence of A332820. %K A338907 nonn %O A338907 1,1 %A A338907 _Gus Wiseman_, Nov 28 2020