cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338908 Squarefree semiprimes whose prime indices sum to an even number.

This page as a plain text file.
%I A338908 #16 Feb 01 2021 22:16:06
%S A338908 10,21,22,34,39,46,55,57,62,82,85,87,91,94,111,115,118,129,133,134,
%T A338908 146,155,159,166,183,187,194,203,205,206,213,218,235,237,247,253,254,
%U A338908 259,267,274,295,298,301,303,314,321,334,335,339,341,358,365,371,377,382
%N A338908 Squarefree semiprimes whose prime indices sum to an even number.
%C A338908 A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.
%e A338908 The sequence of terms together with their prime indices begins:
%e A338908      10: {1,3}     115: {3,9}     213: {2,20}
%e A338908      21: {2,4}     118: {1,17}    218: {1,29}
%e A338908      22: {1,5}     129: {2,14}    235: {3,15}
%e A338908      34: {1,7}     133: {4,8}     237: {2,22}
%e A338908      39: {2,6}     134: {1,19}    247: {6,8}
%e A338908      46: {1,9}     146: {1,21}    253: {5,9}
%e A338908      55: {3,5}     155: {3,11}    254: {1,31}
%e A338908      57: {2,8}     159: {2,16}    259: {4,12}
%e A338908      62: {1,11}    166: {1,23}    267: {2,24}
%e A338908      82: {1,13}    183: {2,18}    274: {1,33}
%e A338908      85: {3,7}     187: {5,7}     295: {3,17}
%e A338908      87: {2,10}    194: {1,25}    298: {1,35}
%e A338908      91: {4,6}     203: {4,10}    301: {4,14}
%e A338908      94: {1,15}    205: {3,13}    303: {2,26}
%e A338908     111: {2,12}    206: {1,27}    314: {1,37}
%t A338908 Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&& EvenQ[Total[PrimePi/@First/@FactorInteger[#]]]&]
%Y A338908 A031215 looks at primes instead of semiprimes.
%Y A338908 A300061 and A319241 (squarefree) look all numbers (not just semiprimes).
%Y A338908 A338905 has this as union of even-indexed rows.
%Y A338908 A338906 is the nonsquarefree version.
%Y A338908 A338907 is the odd version.
%Y A338908 A001358 lists semiprimes, with odd/even terms A046315/A100484.
%Y A338908 A005117 lists squarefree numbers.
%Y A338908 A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
%Y A338908 A024697 is the sum of semiprimes of weight n.
%Y A338908 A025129 is the sum of squarefree semiprimes of weight n.
%Y A338908 A056239 gives the sum of prime indices of n.
%Y A338908 A289182/A115392 list the positions of odd/even terms in A001358.
%Y A338908 A320656 counts factorizations into squarefree semiprimes.
%Y A338908 A332765 gives the greatest squarefree semiprime of weight n.
%Y A338908 A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
%Y A338908 A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
%Y A338908 A338904 groups semiprimes by weight.
%Y A338908 A338911 lists products of pairs of primes both of even index.
%Y A338908 A339114/A339115 give the least/greatest semiprime of weight n.
%Y A338908 A339116 groups squarefree semiprimes by greater prime factor.
%Y A338908 Cf. A000040, A001221, A001222, A087112, A098350, A112798, A168472, A338901, A338904, A339004, A339005.
%K A338908 nonn
%O A338908 1,1
%A A338908 _Gus Wiseman_, Nov 28 2020