This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338908 #16 Feb 01 2021 22:16:06 %S A338908 10,21,22,34,39,46,55,57,62,82,85,87,91,94,111,115,118,129,133,134, %T A338908 146,155,159,166,183,187,194,203,205,206,213,218,235,237,247,253,254, %U A338908 259,267,274,295,298,301,303,314,321,334,335,339,341,358,365,371,377,382 %N A338908 Squarefree semiprimes whose prime indices sum to an even number. %C A338908 A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. %e A338908 The sequence of terms together with their prime indices begins: %e A338908 10: {1,3} 115: {3,9} 213: {2,20} %e A338908 21: {2,4} 118: {1,17} 218: {1,29} %e A338908 22: {1,5} 129: {2,14} 235: {3,15} %e A338908 34: {1,7} 133: {4,8} 237: {2,22} %e A338908 39: {2,6} 134: {1,19} 247: {6,8} %e A338908 46: {1,9} 146: {1,21} 253: {5,9} %e A338908 55: {3,5} 155: {3,11} 254: {1,31} %e A338908 57: {2,8} 159: {2,16} 259: {4,12} %e A338908 62: {1,11} 166: {1,23} 267: {2,24} %e A338908 82: {1,13} 183: {2,18} 274: {1,33} %e A338908 85: {3,7} 187: {5,7} 295: {3,17} %e A338908 87: {2,10} 194: {1,25} 298: {1,35} %e A338908 91: {4,6} 203: {4,10} 301: {4,14} %e A338908 94: {1,15} 205: {3,13} 303: {2,26} %e A338908 111: {2,12} 206: {1,27} 314: {1,37} %t A338908 Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&& EvenQ[Total[PrimePi/@First/@FactorInteger[#]]]&] %Y A338908 A031215 looks at primes instead of semiprimes. %Y A338908 A300061 and A319241 (squarefree) look all numbers (not just semiprimes). %Y A338908 A338905 has this as union of even-indexed rows. %Y A338908 A338906 is the nonsquarefree version. %Y A338908 A338907 is the odd version. %Y A338908 A001358 lists semiprimes, with odd/even terms A046315/A100484. %Y A338908 A005117 lists squarefree numbers. %Y A338908 A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484. %Y A338908 A024697 is the sum of semiprimes of weight n. %Y A338908 A025129 is the sum of squarefree semiprimes of weight n. %Y A338908 A056239 gives the sum of prime indices of n. %Y A338908 A289182/A115392 list the positions of odd/even terms in A001358. %Y A338908 A320656 counts factorizations into squarefree semiprimes. %Y A338908 A332765 gives the greatest squarefree semiprime of weight n. %Y A338908 A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506. %Y A338908 A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900. %Y A338908 A338904 groups semiprimes by weight. %Y A338908 A338911 lists products of pairs of primes both of even index. %Y A338908 A339114/A339115 give the least/greatest semiprime of weight n. %Y A338908 A339116 groups squarefree semiprimes by greater prime factor. %Y A338908 Cf. A000040, A001221, A001222, A087112, A098350, A112798, A168472, A338901, A338904, A339004, A339005. %K A338908 nonn %O A338908 1,1 %A A338908 _Gus Wiseman_, Nov 28 2020