This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338910 #28 Apr 22 2025 05:09:06 %S A338910 4,10,22,25,34,46,55,62,82,85,94,115,118,121,134,146,155,166,187,194, %T A338910 205,206,218,235,253,254,274,289,295,298,314,334,335,341,358,365,382, %U A338910 391,394,415,422,451,454,466,482,485,514,515,517,527,529,538,545,554 %N A338910 Numbers of the form prime(x) * prime(y) where x and y are both odd. %F A338910 Numbers m such that A001222(m) = A195017(m) = 2. - _Peter Munn_, Jan 17 2021 %e A338910 The sequence of terms together with their prime indices begins: %e A338910 4: {1,1} 146: {1,21} 314: {1,37} %e A338910 10: {1,3} 155: {3,11} 334: {1,39} %e A338910 22: {1,5} 166: {1,23} 335: {3,19} %e A338910 25: {3,3} 187: {5,7} 341: {5,11} %e A338910 34: {1,7} 194: {1,25} 358: {1,41} %e A338910 46: {1,9} 205: {3,13} 365: {3,21} %e A338910 55: {3,5} 206: {1,27} 382: {1,43} %e A338910 62: {1,11} 218: {1,29} 391: {7,9} %e A338910 82: {1,13} 235: {3,15} 394: {1,45} %e A338910 85: {3,7} 253: {5,9} 415: {3,23} %e A338910 94: {1,15} 254: {1,31} 422: {1,47} %e A338910 115: {3,9} 274: {1,33} 451: {5,13} %e A338910 118: {1,17} 289: {7,7} 454: {1,49} %e A338910 121: {5,5} 295: {3,17} 466: {1,51} %e A338910 134: {1,19} 298: {1,35} 482: {1,53} %p A338910 q:= n-> (l-> add(i[2], i=l)=2 and andmap(i-> %p A338910 numtheory[pi](i[1])::odd, l))(ifactors(n)[2]): %p A338910 select(q, [$1..1000])[]; # _Alois P. Heinz_, Nov 23 2020 %t A338910 Select[Range[100],PrimeOmega[#]==2&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&] %o A338910 (Python) %o A338910 from math import isqrt %o A338910 from sympy import primepi, primerange %o A338910 def A338910(n): %o A338910 def bisection(f,kmin=0,kmax=1): %o A338910 while f(kmax) > kmax: kmax <<= 1 %o A338910 kmin = kmax >> 1 %o A338910 while kmax-kmin > 1: %o A338910 kmid = kmax+kmin>>1 %o A338910 if f(kmid) <= kmid: %o A338910 kmax = kmid %o A338910 else: %o A338910 kmin = kmid %o A338910 return kmax %o A338910 def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),-1) if a&1) %o A338910 return bisection(f,n,n) # _Chai Wah Wu_, Apr 03 2025 %Y A338910 A338911 is the even instead of odd version. %Y A338910 A339003 is the squarefree case. %Y A338910 A001221 counts distinct prime indices. %Y A338910 A001222 counts prime indices. %Y A338910 A001358 lists semiprimes, with odd/even terms A046315/A100484. %Y A338910 A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484. %Y A338910 A289182/A115392 list the positions of odd/even terms of A001358. %Y A338910 A300912 lists semiprimes with relatively prime indices. %Y A338910 A318990 lists semiprimes with divisible indices. %Y A338910 A338904 groups semiprimes by weight. %Y A338910 A338906/A338907 are semiprimes of even/odd weight. %Y A338910 A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506. %Y A338910 A338899, A270650, and A270652 give prime indices of squarefree semiprimes. %Y A338910 A338909 lists semiprimes with non-relatively prime indices. %Y A338910 Cf. A005117, A037143, A055684, A056239, A065516, A112798, A195017, A320655, A320732, A320892, A339004. %K A338910 nonn %O A338910 1,1 %A A338910 _Gus Wiseman_, Nov 20 2020