This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338911 #24 Jul 27 2025 08:57:41 %S A338911 9,21,39,49,57,87,91,111,129,133,159,169,183,203,213,237,247,259,267, %T A338911 301,303,321,339,361,371,377,393,417,427,453,481,489,497,519,543,551, %U A338911 553,559,579,597,623,669,687,689,703,707,717,749,753,789,791,793,813,817 %N A338911 Numbers of the form prime(x) * prime(y) where x and y are both even. %F A338911 Numbers m such that A001222(m) = 2 and A195017(m) = -2. - _Peter Munn_, Jan 17 2021 %e A338911 The sequence of terms together with their prime indices begins: %e A338911 9: {2,2} 237: {2,22} 481: {6,12} %e A338911 21: {2,4} 247: {6,8} 489: {2,38} %e A338911 39: {2,6} 259: {4,12} 497: {4,20} %e A338911 49: {4,4} 267: {2,24} 519: {2,40} %e A338911 57: {2,8} 301: {4,14} 543: {2,42} %e A338911 87: {2,10} 303: {2,26} 551: {8,10} %e A338911 91: {4,6} 321: {2,28} 553: {4,22} %e A338911 111: {2,12} 339: {2,30} 559: {6,14} %e A338911 129: {2,14} 361: {8,8} 579: {2,44} %e A338911 133: {4,8} 371: {4,16} 597: {2,46} %e A338911 159: {2,16} 377: {6,10} 623: {4,24} %e A338911 169: {6,6} 393: {2,32} 669: {2,48} %e A338911 183: {2,18} 417: {2,34} 687: {2,50} %e A338911 203: {4,10} 427: {4,18} 689: {6,16} %e A338911 213: {2,20} 453: {2,36} 703: {8,12} %p A338911 q:= n-> (l-> add(i[2], i=l)=2 and andmap(i-> %p A338911 numtheory[pi](i[1])::even, l))(ifactors(n)[2]): %p A338911 select(q, [$1..1000])[]; # _Alois P. Heinz_, Nov 23 2020 %t A338911 Select[Range[100],PrimeOmega[#]==2&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&] %o A338911 (Python) %o A338911 from math import isqrt %o A338911 from sympy import primerange, primepi %o A338911 def A338911(n): %o A338911 def bisection(f,kmin=0,kmax=1): %o A338911 while f(kmax) > kmax: kmax <<= 1 %o A338911 kmin = kmax >> 1 %o A338911 while kmax-kmin > 1: %o A338911 kmid = kmax+kmin>>1 %o A338911 if f(kmid) <= kmid: %o A338911 kmax = kmid %o A338911 else: %o A338911 kmin = kmid %o A338911 return kmax %o A338911 def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),-1) if a&1^1) %o A338911 return bisection(f,n,n) # _Chai Wah Wu_, Apr 03 2025 %Y A338911 A338910 is the odd instead of even version. %Y A338911 A339004 is the squarefree case. %Y A338911 A001221 counts distinct prime indices. %Y A338911 A001222 counts prime indices. %Y A338911 A001358 lists semiprimes, with odd/even terms A046315/A100484. %Y A338911 A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484. %Y A338911 A338899, A270650, A270652 list prime indices of squarefree semiprimes. %Y A338911 A289182/A115392 list the positions of odd/even terms of A001358. %Y A338911 A300912 lists semiprimes with relatively prime indices. %Y A338911 A318990 lists semiprimes with divisible indices. %Y A338911 A338904 groups semiprimes by weight. %Y A338911 A338906/A338907 list semiprimes of even/odd weight. %Y A338911 A338909 lists semiprimes with non-relatively prime indices. %Y A338911 A338912 and A338913 list prime indices of semiprimes, with product A087794, sum A176504, and difference A176506. %Y A338911 Cf. A005117, A037143, A055684, A056239, A065516, A112798, A128301, A195017, A320655, A320732, A320892, A338898, A339002, A339003. %K A338911 nonn %O A338911 1,1 %A A338911 _Gus Wiseman_, Nov 20 2020