This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338913 #14 Sep 07 2024 08:54:23 %S A338913 1,2,2,3,4,3,4,5,3,6,5,7,4,8,6,9,4,7,5,8,10,11,6,9,12,5,13,7,14,10,6, %T A338913 11,15,8,16,12,9,17,7,5,18,13,14,8,19,15,20,6,10,21,11,22,16,9,23,6, %U A338913 17,24,18,12,7,25,19,26,10,13,27,8,20,28,14,11,29,21 %N A338913 Greater prime index of the n-th semiprime. %C A338913 A semiprime is a product of any two prime numbers. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A338913 After the first three terms, there appear to be no adjacent equal terms. %H A338913 Amiram Eldar, <a href="/A338913/b338913.txt">Table of n, a(n) for n = 1..10000</a> %F A338913 a(n) = A000720(A084127(n)). %e A338913 The semiprimes are: %e A338913 2*2, 2*3, 3*3, 2*5, 2*7, 3*5, 3*7, 2*11, 5*5, 2*13, ... %e A338913 so the greater prime factors are: %e A338913 2, 3, 3, 5, 7, 5, 7, 11, 5, 13, ... %e A338913 with indices: %e A338913 1, 2, 2, 3, 4, 3, 4, 5, 3, 6, ... %t A338913 Table[Max[PrimePi/@First/@FactorInteger[n]],{n,Select[Range[100],PrimeOmega[#]==2&]}] %Y A338913 A115392 lists positions of first appearances of each positive integer. %Y A338913 A270652 is the squarefree case, with lesser part A270650. %Y A338913 A338898 has this as second column. %Y A338913 A338912 is the corresponding lesser prime index. %Y A338913 A001221 counts distinct prime indices. %Y A338913 A001222 counts prime indices. %Y A338913 A001358 lists semiprimes, with odd/even terms A046315/A100484. %Y A338913 A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484. %Y A338913 A087794/A176504/A176506 are product/sum/difference of semiprime indices. %Y A338913 A338910/A338911 list products of pairs of odd/even-indexed primes. %Y A338913 Cf. A037143, A056239, A065516, A084126, A084127, A112798, A128301, A289182, A320732, A320892, A338900, A338904, A338909. %K A338913 nonn %O A338913 1,2 %A A338913 _Gus Wiseman_, Nov 20 2020