This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338915 #24 Feb 16 2025 08:34:01 %S A338915 0,0,0,0,1,0,1,1,4,2,6,6,12,12,20,22,38,42,60,73,101,124,164,203,266, %T A338915 319,415,507,649,786,983,1198,1499,1797,2234,2673,3303,3952,4826,5753, %U A338915 6999,8330,10051,11943,14357,16956,20322,23997,28568,33657,39897,46879 %N A338915 Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of not necessarily distinct parts. %C A338915 The multiplicities of such a partition form a non-loop-graphical partition (A339655, A339657). %H A338915 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition</a>. %F A338915 A027187(n) = a(n) + A338916(n). %e A338915 The a(7) = 1 through a(12) = 12 partitions: %e A338915 211111 2222 411111 222211 222221 3333 %e A338915 221111 21111111 331111 611111 222222 %e A338915 311111 511111 22211111 441111 %e A338915 11111111 22111111 32111111 711111 %e A338915 31111111 41111111 22221111 %e A338915 1111111111 2111111111 32211111 %e A338915 33111111 %e A338915 42111111 %e A338915 51111111 %e A338915 2211111111 %e A338915 3111111111 %e A338915 111111111111 %e A338915 For example, the partition y = (3,2,2,1,1,1,1,1) can be partitioned into pairs in just three ways: %e A338915 {{1,1},{1,1},{1,2},{2,3}} %e A338915 {{1,1},{1,1},{1,3},{2,2}} %e A338915 {{1,1},{1,2},{1,2},{1,3}} %e A338915 None of these is strict, so y is counted under a(12). %t A338915 smcs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[smcs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]]; %t A338915 Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&smcs[Times@@Prime/@#]=={}&]],{n,0,10}] %Y A338915 The Heinz numbers of these partitions are A320892. %Y A338915 The complement in even-length partitions is A338916. %Y A338915 A000070 counts non-multigraphical partitions of 2n, ranked by A339620. %Y A338915 A000569 counts graphical partitions, ranked by A320922. %Y A338915 A001358 lists semiprimes, with squarefree case A006881. %Y A338915 A058696 counts partitions of even numbers, ranked by A300061. %Y A338915 A209816 counts multigraphical partitions, ranked by A320924. %Y A338915 A320655 counts factorizations into semiprimes. %Y A338915 A322353 counts factorizations into distinct semiprimes. %Y A338915 A339617 counts non-graphical partitions of 2n, ranked by A339618. %Y A338915 A339655 counts non-loop-graphical partitions of 2n, ranked by A339657. %Y A338915 A339656 counts loop-graphical partitions, ranked by A339658. %Y A338915 The following count partitions of even length and give their Heinz numbers: %Y A338915 - A027187 has no additional conditions (A028260). %Y A338915 - A096373 cannot be partitioned into strict pairs (A320891). %Y A338915 - A338914 can be partitioned into strict pairs (A320911). %Y A338915 - A338916 can be partitioned into distinct pairs (A320912). %Y A338915 - A339559 cannot be partitioned into distinct strict pairs (A320894). %Y A338915 - A339560 can be partitioned into distinct strict pairs (A339561). %Y A338915 Cf. A001055, A007717, A025065, A320656, A320732, A320893, A338898, A338902. %K A338915 nonn %O A338915 0,9 %A A338915 _Gus Wiseman_, Dec 10 2020 %E A338915 More terms from _Jinyuan Wang_, Feb 14 2025