This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338916 #16 Feb 16 2025 08:34:01 %S A338916 1,0,1,1,2,3,5,6,8,12,16,21,28,37,49,64,80,104,135,169,216,268,341, %T A338916 420,527,654,809,991,1218,1488,1828,2213,2687,3262,3934,4754,5702, %U A338916 6849,8200,9819,11693,13937,16562,19659,23262,27577,32493,38341,45112,53059,62265 %N A338916 Number of integer partitions of n that can be partitioned into distinct pairs of (possibly equal) parts. %C A338916 The multiplicities of such a partition form a loop-graphical partition (A339656, A339658). %H A338916 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition</a>. %F A338916 A027187(n) = a(n) + A338915(n). %e A338916 The a(2) = 1 through a(10) = 16 partitions: %e A338916 (11) (21) (22) (32) (33) (43) (44) (54) (55) %e A338916 (31) (41) (42) (52) (53) (63) (64) %e A338916 (2111) (51) (61) (62) (72) (73) %e A338916 (2211) (2221) (71) (81) (82) %e A338916 (3111) (3211) (3221) (3222) (91) %e A338916 (4111) (3311) (3321) (3322) %e A338916 (4211) (4221) (3331) %e A338916 (5111) (4311) (4222) %e A338916 (5211) (4321) %e A338916 (6111) (4411) %e A338916 (222111) (5221) %e A338916 (321111) (5311) %e A338916 (6211) %e A338916 (7111) %e A338916 (322111) %e A338916 (421111) %e A338916 For example, the partition (4,2,1,1,1,1) can be partitioned into {{1,1},{1,2},{1,4}}, and thus is counted under a(10). %t A338916 stfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]]; %t A338916 Table[Length[Select[IntegerPartitions[n],stfs[Times@@Prime/@#]!={}&]],{n,0,20}] %Y A338916 A320912 gives the Heinz numbers of these partitions. %Y A338916 A338915 counts the complement in even-length partitions. %Y A338916 A339563 counts factorizations of the same type. %Y A338916 A000070 counts non-multigraphical partitions of 2n, ranked by A339620. %Y A338916 A000569 counts graphical partitions, ranked by A320922. %Y A338916 A001358 lists semiprimes, with squarefree case A006881. %Y A338916 A058696 counts partitions of even numbers, ranked by A300061. %Y A338916 A209816 counts multigraphical partitions, ranked by A320924. %Y A338916 A320655 counts factorizations into semiprimes. %Y A338916 A322353 counts factorizations into distinct semiprimes. %Y A338916 A339617 counts non-graphical partitions of 2n, ranked by A339618. %Y A338916 A339655 counts non-loop-graphical partitions of 2n, ranked by A339657. %Y A338916 A339656 counts loop-graphical partitions, ranked by A339658. %Y A338916 The following count partitions of even length and give their Heinz numbers: %Y A338916 - A027187 has no additional conditions (A028260). %Y A338916 - A096373 cannot be partitioned into strict pairs (A320891). %Y A338916 - A338914 can be partitioned into strict pairs (A320911). %Y A338916 - A338915 cannot be partitioned into distinct pairs (A320892). %Y A338916 - A339559 cannot be partitioned into distinct strict pairs (A320894). %Y A338916 - A339560 can be partitioned into distinct strict pairs (A339561). %Y A338916 Cf. A001055, A007717, A025065, A320656, A320732, A320893, A320921, A338898, A338902, A339564. %K A338916 nonn %O A338916 0,5 %A A338916 _Gus Wiseman_, Dec 10 2020 %E A338916 More terms from _Jinyuan Wang_, Feb 14 2025