cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338916 Number of integer partitions of n that can be partitioned into distinct pairs of (possibly equal) parts.

This page as a plain text file.
%I A338916 #16 Feb 16 2025 08:34:01
%S A338916 1,0,1,1,2,3,5,6,8,12,16,21,28,37,49,64,80,104,135,169,216,268,341,
%T A338916 420,527,654,809,991,1218,1488,1828,2213,2687,3262,3934,4754,5702,
%U A338916 6849,8200,9819,11693,13937,16562,19659,23262,27577,32493,38341,45112,53059,62265
%N A338916 Number of integer partitions of n that can be partitioned into distinct pairs of (possibly equal) parts.
%C A338916 The multiplicities of such a partition form a loop-graphical partition (A339656, A339658).
%H A338916 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphicalPartition.html">Graphical partition</a>.
%F A338916 A027187(n) = a(n) + A338915(n).
%e A338916 The a(2) = 1 through a(10) = 16 partitions:
%e A338916   (11)  (21)  (22)  (32)    (33)    (43)    (44)    (54)      (55)
%e A338916               (31)  (41)    (42)    (52)    (53)    (63)      (64)
%e A338916                     (2111)  (51)    (61)    (62)    (72)      (73)
%e A338916                             (2211)  (2221)  (71)    (81)      (82)
%e A338916                             (3111)  (3211)  (3221)  (3222)    (91)
%e A338916                                     (4111)  (3311)  (3321)    (3322)
%e A338916                                             (4211)  (4221)    (3331)
%e A338916                                             (5111)  (4311)    (4222)
%e A338916                                                     (5211)    (4321)
%e A338916                                                     (6111)    (4411)
%e A338916                                                     (222111)  (5221)
%e A338916                                                     (321111)  (5311)
%e A338916                                                               (6211)
%e A338916                                                               (7111)
%e A338916                                                               (322111)
%e A338916                                                               (421111)
%e A338916 For example, the partition (4,2,1,1,1,1) can be partitioned into {{1,1},{1,2},{1,4}}, and thus is counted under a(10).
%t A338916 stfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
%t A338916 Table[Length[Select[IntegerPartitions[n],stfs[Times@@Prime/@#]!={}&]],{n,0,20}]
%Y A338916 A320912 gives the Heinz numbers of these partitions.
%Y A338916 A338915 counts the complement in even-length partitions.
%Y A338916 A339563 counts factorizations of the same type.
%Y A338916 A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
%Y A338916 A000569 counts graphical partitions, ranked by A320922.
%Y A338916 A001358 lists semiprimes, with squarefree case A006881.
%Y A338916 A058696 counts partitions of even numbers, ranked by A300061.
%Y A338916 A209816 counts multigraphical partitions, ranked by A320924.
%Y A338916 A320655 counts factorizations into semiprimes.
%Y A338916 A322353 counts factorizations into distinct semiprimes.
%Y A338916 A339617 counts non-graphical partitions of 2n, ranked by A339618.
%Y A338916 A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
%Y A338916 A339656 counts loop-graphical partitions, ranked by A339658.
%Y A338916 The following count partitions of even length and give their Heinz numbers:
%Y A338916 - A027187 has no additional conditions (A028260).
%Y A338916 - A096373 cannot be partitioned into strict pairs (A320891).
%Y A338916 - A338914 can be partitioned into strict pairs (A320911).
%Y A338916 - A338915 cannot be partitioned into distinct pairs (A320892).
%Y A338916 - A339559 cannot be partitioned into distinct strict pairs (A320894).
%Y A338916 - A339560 can be partitioned into distinct strict pairs (A339561).
%Y A338916 Cf. A001055, A007717, A025065, A320656, A320732, A320893, A320921, A338898, A338902, A339564.
%K A338916 nonn
%O A338916 0,5
%A A338916 _Gus Wiseman_, Dec 10 2020
%E A338916 More terms from _Jinyuan Wang_, Feb 14 2025